Introduction to Digital Design

Using Digilent FPGA Boards
— Block Diagram / VHDL Examples

Richard E. Haskell
Darrin M. Hanna

Oakland University, Rochester, Michigan

LBE Books
Rochester Hills, MI

Copyright 2009 by LBE Books, LLC. All rights reserved.

ISBN 978-0-9801337-6-9

Online Version

Published by LBE Books, LLC
1202 Walton Boulevard

Suite 214

Rochester Hills, MI 48307

www.lbebooks.com

il

Preface

A major revolution in digital design has taken place over the past decade.
Field programmable gate arrays (FPGAs) can now contain over a million equivalent
logic gates and tens of thousands of flip-flops. This means that it is not possible to
use traditional methods of logic design involving the drawing of logic diagrams
when the digital circuit may contain thousands of gates. The reality is that today
digital systems are designed by writing software in the form of hardware
description languages (HDLs). The most common HDLs used today are VHDL and
Verilog. Both are in widespread use. When using these hardware description
languages the designer typically describes the behavior of the logic circuit rather
than writing traditional Boolean logic equations. Computer-aided design tools are
used to both simulate the VHDL or Verilog design and to synthesize the design to
actual hardware.

This book assumes no previous knowledge of digital design. We use 30
examples to show you how to get started designing digital circuits that you can
implement on a Xilinx Spartan3E FPGA using either the Digilent BASYS™ system
board that can be purchased from www.digilentinc.com for $59 or the Digilent
Nexys-2 board that costs $99. We will use Active-HDL from Aldec to design,
simulate, synthesize, and implement our digital designs. A free student edition of
Active-HDL is available from Aldec, Inc. (www.aldec.com). To synthesize your
designs to a Spartan3E FPGA you will need to download the free ISE WebPACK
from Xilinx, Inc. (www.xilinx.com). The Xilinx synthesis tools are called from
within the Aldec Active-HDL integrated GUI. We will use the ExPort utility to
download your synthesized design to the Spartan3E FPGA. ExPort is part of the
Adept software suite that you can download free from Digilent, Inc.
(www.digilentinc.com). A more complete book called Digital Design Using
Digilent FPGA Boards — VHDL / Active-HDL Edition is also available from
Digilent or LBE Books (www.lbebooks.com). This more comprehensive book
contains over 75 examples including examples of using the VGA and PS/2 ports.
Similar books that use Verilog are also available from Digilent or LBE Books.

Many colleagues and students have influenced the development of this
book. Their stimulating discussions, probing questions, and critical comments are
greatly appreciated.

Richard E. Haskell
Darrin M. Hanna

il

Introduction to Digital Design

Using Digilent FPGA Boards
— Block Diagram / VHDL Examples

Table of Contents

Introduction — Digital Design Using FPGAs 1
Example 1 — Switches and LEDs 6
Example 2 — 2-Input Gates 11
Example 3 — Multiple-Input Gates 16
Example 4 — Equality Detector 21
Example 5 — 2-to-1 Multiplexer 23
Example 6 — Quad 2-to-1 Multiplexer 27
Example 7 — 4-to-1 Multiplexer 34
Example 8 — Clocks and Counters 42
Example 9 — 7-Segment Decoder 48
Example 10 — 7-Segment Displays: x7seg and x7segb 54
Example 11 — 2's Complement 4-Bit Saturator 64
Example 12 — Full Adder 70
Example 13 —4-Bit Adder 75
Example 14 — N-Bit Adder 79
Example 15 — N-Bit Comparator 82
Example 16 — Edge-Triggered D Flip-Flop Available only in print vesion

Example 17 — D Flip-Flops in VHDL

Example 18 — Divide-by-2 Counter

Example 19 — Registers

Example 20 — N-Bit Register in VHDL
Example 21 — Shift Registers

Example 22 — Ring Counters

Example 23 — Johnson Counters

Example 24 — Debounce Pushbuttons

Example 25 — Clock Pulse

Example 26 — Arbitrary Waveform

Example 27 — Pulse-Width Modulation (PWM)
Example 28 — Controlling the Position of a Servo
Example 29 — Scrolling the 7-Segment Display
Example 30 — Fibonacci Sequence

v

Appendix A — Aldec Active-HDL Tutorial 123

Part 1: Project Setup 123
Part 2: Design Entry — sw2led.bde 127
Part 3: Synthesis and Implementation 130
Part 4: Program FPGA Board 134
Part 5: Design Entry — gates2.bde 136
Part 6: Simulation 142
Part 7: Design Entry — HDE 146
Part 8: Simulation — gates2 149
Appendix B — Number Systems Available only in print vesion

B.1 Counting in Binary and Hexadecimal
B.2 Positional Notation

B.3 Fractional Numbers

B.4 Number System Conversions

B.5 Negative Numbers

Appendix C — Basic Logic Gates
C.1 Truth Tables and Logic Equations
C.2 Positive and Negative Logic: De Morgan’s Theorem
C.3 Sum of Products Design
C.4 Product of Sums Design

Appendix D — Boolean Algebra and Logic Equations
D.1 Boolean Theorems
D.2 Karnaugh Maps

Appendix E — VHDL Quick Reference Guide 189

Introduction 1

Introduction

Digital Design Using FPGAs

The first integrated circuits that were developed in the early 1960s contained less
that 100 transistors on a chip and are called small-scale integrated (SSI) circuits.
Medium-scale integrated (MSI) circuits, developed in the late 1960s, contain up to
several hundreds of transistors on a chip. By the mid 1970s large-scale integrated (LSI)
circuits containing several thousands of transistors had been developed. Very-large-scale
integrated (VLSI) circuits containing over 100,000 transistors had been developed by the
early 1980s. This trend has continued to the present day with 1,000,000 transistors on a
chip by the late 1980s, 10,000,000 transistors on a chip by the mid-1990s, over
100,000,000 transistors by 2004, and up to 1,000,000,000 transistors on a chip today.
This exponential growth in the amount of digital logic that can be packed into a single
chip has produced serious problems for the digital designer. How can an engineer, or
even a team of engineers, design a digital logic circuit that will end up containing
millions of transistors?

In Appendix C we show that any digital logic circuit can be made from only three
types of basic gates: AND, OR, and NOT. In fact, we will see that any digital logic
circuit can be made using only NAND gates (or only NOR gates), where each NAND or
NOR gate contains four transistors. These basic gates were provided in SSI chips using
various technologies, the most popular being transistor-transistor logic (TTL). These
TTL chips were the mainstay of digital design throughout the 1960s and 1970s. Many
MSI TTL chips became available for performing all types of digital logic functions such
as decoders, adders, multiplexers, comparators, and many others.

By the 1980s thousands of gates could fit on a single chip. Thus, several different
varieties of programmable logic devices (PLDs) were developed in which arrays
containing large numbers of AND, OR, and NOT gates were arranged in a single chip
without any predetermined function. Rather, the designer could design any type of
digital circuit and implement it by connecting the internal gates in a particular way. This
is usually done by opening up fuse links within the chip using computer-aided tools.
Eventually the equivalent of many PLDs on a single chip led to complex programmable
logic devices (CPLDs).

Field Programmable Gate Arrays (FPGAs)

A completely different architecture was introduced in the mid-1980°s that uses
RAM-based lookup tables instead of AND-OR gates to implement combinational logic.
These devices are called field programmable gate arrays (FPGAs). The device consists
of an array of configurable logic blocks (CLBs) surrounded by an array of I/O blocks.
The Spartan-3E from Xilinx also contains some blocks of RAM, 18 x 18 multipliers, as
well as Digital Clock Manager (DCM) blocks. These DCMs are used to eliminate clock
distribution delay and can also increase or decrease the frequency of the clock.

2 Introduction

Each CLB in the Spartan-3E FPGA contains four slices, each of which contains
two 16 x 1 RAM look-up tables (LUTs), which can implement any combinational logic
function of four variables. In addition to two look-up tables, each slice contains two D
flip-flops which act as storage devices for bits. The basic architecture of a Spartan-3E
FPGA is shown in Fig. 1.

CLB CLB

] LuT a LuT ;

— Slice Slice

L LuT a LuT ;

| LuT a LUT ;

] Slice Slice

L LUT LUT

- CLB CLB

S S R R

Figure 1 Architecture of a Spartan-3E FPGA

The BASYS board from Digilent contains a Xilinx Spartan3E-100 TQ144 FPGA.
This chip contains 240 CLBs arranged as 22 rows and 16 columns. There are therefore
960 slices with a total of 1,920 LUTs and flip-flops. This part also contains 73,728 bits
of block RAM. Half of the LUTs on the chip can be used for a maximum of 15,360 bits
of distributed RAM.

By contrast the Nexys-2 board from Digilent contains a Xilinx Spartan3E-500
FG320 FPGA. This chip contains 1,164 CLBs arranged as 46 rows and 34 columns.
There are therefore 4,656 slices with a total of 9,312 LUTs and flip-flops. This part also
contains 368,640 bits of block RAM. Half of the LUTs on the chip can be used for a
maximum of 74,752 bits of distributed RAM.

In general, FPGAs can implement much larger digital systems than CPLDs as
illustrated in Table 1. The column labeled No. of Gates is really equivalent gates as we
have seen that FPGAs really don’t have AND and OR gates, but rather just RAM look-up
tables. (Each slice does include two AND gates and two XOR gates as part of carry and
arithmetic logic used when implementing arithmetic functions including addition and

Introduction

multiplication.) Note from Table 1 that FPGAs can have the equivalent of millions of
gates and tens of thousands of flip-flops.

Table 1 Comparing Xilinx CPLDs and FPGAs

Xilinx Part No. of Gates No. of I/0s | No. of CLBs | No. of Flip-flops | Block RAM (bits)
CPLDs
9500 family 800 — 6,400 34 -192 36 - 288
FPGAs
Spartan 5,000 — 40,000 77-224| 100 — 784 360 —2,016
Spartan Il 15,000 — 200,000 86 — 284 96 — 1,176 642 —-5,556 | 16,384 — 57,344
Spartan IIE 23,000 — 600,000 182 - 514 | 384 — 3,456 2,082 — 15,366 | 32,768 — 294,912
Spartan 3 50,000 - 5,000,000 124 - 784 | 192 — 8,320 2,280 — 71,264 |73,728 — 1,916,928
Spartan-3E | 100,000 — 1,600,000 108 — 376 | 240 — 3,688 1,920 — 29,505 | 73,728 — 663,552
Virtex 57,906 — 1,124,022 180 — 512|384 — 6,144 2,076 — 26,112 | 32,768 — 131,072
Virtex E 71,693 — 4,074,387 176 — 804 | 384 — 16,224 1,888 — 66,504 | 65,536 — 851,968
Virtex-Il 40,960 — 8,388,608 88—-1,108 | 64—11,648 1,040 — 99,832 |73,728 — 3,096,576

Modern Design of Digital Systems

The traditional way of designing digital circuits is to draw logic diagrams
containing SSI gates and MSI logic functions. However, by the late 1980s and early
1990s such a process was becoming problematic. How can you draw schematic diagrams
containing hundreds of thousands or millions of gates? As programmable logic devices
replaced TTL chips in new designs a new approach to digital design became necessary.
Computer-aided tools are essential to designing digital circuits today. What has become
clear over the last decade is that today’s digital engineer designs digital systems by
writing software! This is a major paradigm shift from the traditional method of designing
digital systems. Many of the traditional design methods that were important when using
TTL chips are less important when designing for programmable logic devices.

Today digital designers use hardware description languages (HDLs) to design
digital systems. The most widely used HDLs are VHDL and Verilog. Both of these
hardware description languages allow the user to design digital systems by writing a
program that describes the behavior of the digital circuit. The program can then be used
to both simulate the operation of the circuit and synthesize an actual implementation of
the circuit in a CPLD, an FPGA, or an application specific integrated circuit (ASIC).

Another recent trend is to design digital circuits using block diagrams or graphic
symbols that represent higher-level design constructs. These block diagrams can then be
compiled to produce Verilog or VHDL code. We will illustrate this method in this book.

We will use Active-HDL from Aldec for designing our digital circuits. This
integrated tool allows you to enter your design using either a block diagram editor (BDE)
or by writing Verilog or VHDL code using the hardware description editor (HDE). Once
your hardware has been described you can use the functional simulator to produce
waveforms that will verify your design. This hardware description can then be
synthesized to logic equations and implemented or mapped to the FPGA architecture.

4 Introduction

We include a tutorial for using Active-HDL in Appendix A. A free student version of
Active-HDL is available on their website.! We will use Xilinx ISE for synthesizing our
VHDL designs. You can download a free version of ISE™ WebPACK™ from the
Xilinx website.2 This WebPACK™ synthesis tool can be run from within the Aldec
Active-HDL development environment as shown in the tutorial in Appendix A. The
implementation process creates a .bit file that is downloaded to a Xilinx FPGA on the
BASYS board or Nexys-2 shown in Fig. 2. The BASYS board is available to students
for $59 from Digilent, Inc.3 This board includes a 100k-gate equivalent Xilinx
Spartan3E FPGA (250k-gate capacity is also available), 8 slide switches, 4 pushbutton
switches, 8 LEDs, and four 7-segment displays. The frequency of an on-board clock can
be set to 25 MHz, 50 MHz, or 100 MHz using a jumper. There are connectors that allow
the board to be interfaced to external circuits. The board also includes a VGA port and a
PS2 port. The use of these ports are described in a different book.4 Another more
advanced board, the Nexys-2 board, is also available to students for $99 from Digilent.
The Nexys-2 board is similar to the BASYS board except that it contains a 500k- or
1200k-gate equivalent Spartan 3E FPGA, a Hirose FX2 interface for additional add-on
component boards, 16 MB of cellular RAM, 16 MB of flash memory, a 50 MHz clock
and a socket for a second oscillator. The Nexys-2 is ideally suited for embedded
processors.

All of the examples in this book can be used on both the BASYS board and the
Nexys-2 board. The only difference is that you would use the file basys2.ucf to define
the pinouts on the BASYS board and you would use the file nexys2.ucf to define the
pinouts on the Nexys-2 board. Both of these files are available to download from
www.lbebooks.com. Table 2 shows the jumper settings you would use on the two
boards.

Figure 2 (a) BASYS board, (b) Nexys-2 Board

I http://www.aldec.com/education/
2 http://www.xilinx.com
3 http://www.digilentinc.com

4 Digital Design Using Digilent FPGA Boards — VHDL / Active-HDL Edition; available
from www.lbebooks.com.

Introduction 5

Table 1.2 Board Jumper Settings

BASYS Board Nexys-2 Board

Set the JP3 jumper to JTAG Set the POWER SELECT jumper to USB

Remove the JP4 jumper to select a 50 MHz Set the MODE jumper to JTAG
clock

VHDL

VHDL is based on the Ada software programming language but it is not Ada nor
is it a software programming language. VHDL is a hardware description language that
is designed to model digital logic circuits. It simply has syntax similar to the Ada
programming language but the way it behaves is different. In this book you will learn
VHDL by studying the examples we use to describe digital logic and then doing some of
the VHDL problems at the end of each chapter.

In this book we begin by using the Active-HDL block diagram editor to draw
logic circuits using basic gates. When you compile these block diagrams Active-HDL
will generate the corresponding VHDL code. The block diagram representing your logic
circuit can then be used as a module in a higher-level digital design. This higher-level
design can then be compiled to produce its corresponding VHDL code. This hierachical
block diagram editor will make it easy to design top-level designs.

Sometimes it will be easier to design a digital module by writing a VHDL
program directly rather than drawing it using gates. When you do this you can still use
the block diagram for this module in higher-level designs. We will illustrate this process
in many of our examples.

Just like any programming language, you can only learn VHDL by actually
writing VHDL programs and simulating the designs using a VHDL simulator that will
display the waveforms of the signals in your design. This is a good way to learn not only
VHDL but digital logic as well.

A companion book® that uses Verilog instead of VHDL is available from
www.digilentinc.com or www.lbebooks.com. More comprehensive Verilog and VHDL
books are also available.o”

5 Introduction to Digital Design Usign Digilent FPGA Boards — Block Diagram/Verilog Examples
6 Digital Design Using Digilent FPGA Boards — Verilog / Active-HDL Edition, LBE Books, 2009.
7 Digital Design Using Digilent FPGA Boards — VHDL / Active-HDL Edition, LBE Books, 2009.

6 Example 1

Example 1

Switches and LEDs

In this example we will show the basic structure of a VHDL program and how to
write logic equations for 2-input gates. Example la will show the simulation results
using Aldec Active-HDL and Example 1b will show how to synthesize the program to a
Xilinx FPGA on the BASYS or Nexys-2 board.

Prerequisite knowledge:
None
Learned in this Example:
Use of Aldec Active-HDL — Appendix A

1.1 Slide Switches

The slide switches on the BASYS and
Nexys-2 boards are connected to pins on the 3.3V
FPGA through a resistor R as shown in Fig. 1.1.
The value of R is 4.7 k€ on the BASYS board
and 10 kQ on the Nexys-2 board. When the slide
switch is down it is connected to ground and the
input sw(i) to the FPGA is read as a logic 0. =
When the slide switch is up it is connected to 3.3 Figure 1.1 Slide switch connection
V and the input sw(i) to the FPGA is read as a
logic 1.

There are eight slide switches on the BASYS and Nexys-2 boards. The eight pin
numbers on the FPGA corresponding to the eight slide switches are given in a .ucf file.
The file basys2.ucf shown in Listing 1.1 defines the pin numbers for all I/O on the
BASYS board. Note that we have named the slide switches sw(i), i = 0:7, which
correspond to the switch labels on the board. We will always name the slide switches
sw(i) in our top-level designs so that we can use the basys2.ucf file without change.
Because the pin numbers on the Nexys-2 board are different from those on the BASYS
board we will use a different file called nexys2.ucf to define the pin numbers on the
Nexys-2 board. The names of the I/O ports, however, will be the same for both boards.
Therefore, all of the examples in this book can be used with either board by simply using
the proper .ucf file when implementing the design. Both of these .ucf files can be
downloaded from www.lbebooks.com.

swii]

1.2 LEDs

A light emitting diode (LED) emits light when current flows through it in the
positive direction as shown in Fig. 1.2. Current flows through the LED when the voltage
on the anode side (the wide side of the black triangle) is made higher than the voltage on

Switches and LEDs 7

the cathode side (the straight line connected to the apex of the black triangle). When
current flows through a lighted LED the forward voltage across the LED is typically
between +1.5 and +2.0 volts. If voltage V2 in Fig. 1.2 is less than or equal to voltage V1
then no current can flow through the LED and therefore no light will be emitted. If
voltage V2 is greater than voltage V1 then current will flow through the resistor R and the
LED. The resistor is used to limit the amount of current that flows through the LED.
Typical currents needed to light LEDs range from 2 to 15 milliamps.

Listing 1.1 basys2.ucf
Pin assignment for LEDs

NET "1ld<7>" LOC = "p2" ;
NET "ld<6>" LOC = "p3" ;
NET "1ld<5>" LOC = "p4" ;
NET "ld<4>" LOC = "p5" ;
NET "1d<3>" LOC = "p7" ;
NET "ld<2>" LOC = "p8" ;
NET "ld<1l>" LOC = "pl4"
NET "1d<O>" LOC = "pl5"

Pin assignment for slide switches

NET "sw<7>" LOC = "p6";
NET "sw<6>" LOC = "plo";
NET "sw<5>" LOC = "pl2";
NET "sw<4>" LOC = "pl8";
NET "sw<3>" LOC = "p24";
NET "sw<2>" LOC = "p29";
NET "sw<l>" LOC = "p36";
NET "sw<0>" LOC = "p38";

Pin assignment for pushbutton switches

NET "btn<3>" LOC = "p4l";

NET "btn<2>" LOC = "p47";

NET "btn<l>" LOC = "p48";

NET "btn<0>" LOC = "p69";

Pin assignment for 7-segment displays
NET "a to g<é6>" LOC = "p25" ;
NET "a to g<5>" LOC = "ple" ;
NET "a to g<4>" LOC = "p23" ;
NET "a to g<3>" LOC = "P21" ;
NET "a to g<2>" LOC = "p20" ;
NET "a to g<l>" LOC = "pl7" ;
NET "a to g<0>" LOC = "p83" ;
NET "dp" LOC = "p22" ;

NET "an<3>" LOC = "p26";

NET "an<2>" LOC = "p32";

NET "an<1l>" LOC = "p33";

NET "an<0>" LOC = "p34";

Pin assignment for clock
NET "mclk" LOC = "pb54";

8 Example 1

There are two different ways that an I/O No current

pin of an FPGA can be used to turn on an LED. /, AN nol{ght V1 > V2

The first is to connect the FPGA pin to /2 in Fig. R LED

1.2 and to connect V] to ground. Bringing the pin

(72) high will then turn on the LED. To turn off

the LED the output pin would be brought low. Current /\/ light

This is the method used for the LEDs /d(7) — 1d(0) -

on the BASYS and Nexys-2 boards. V2 AN »l V1 < V2
The second method is to connect the R LED

FPGA pin to V1 in Fig. 1.2 and to connect V2 to
a constant voltage. Bringing the pin (V1) low
will then turn on the LED. To turn off the LED
the output pin would be brought high. This voltage should be equal to V2 to make sure
no current flows through the LED. This second method is the method used for the 7-
segment displays on the BASYS and Nexys-2 boards. Examples 9 and 10 will show how
to display hex digits on the 7-segment displays.

Figure 1.2 Turning on an LED

1.3 Connecting the Switches to the LEDs

Part 1 of the tutorial in Appendix A shows how to

ign Simulation Tools Window Help

connect the input switches to the output LEDs using the block g ne iz = g5 v 0 5
diagram editor (BDE) in Active-HDL. The result is shown in

Fig. 1.3. E Va:

Eile Edit Search Yew ‘Workspace Design Iimulation Disgram Tools Window Help & owox
Bl zw e P EORES MY & B H| o ow e w2 5= [z 5= No simulation

: QMmaqQt s e EOPDOLLI"HE~ IO~
’Eswzled(sw?led) j 10 15 20 v 25 0 B0 35 o+ 4D o+ 45 0 S0+ 85 + B0+ B8 ¢ FO o+ TS 80 o« inch
0|Unsurted j

workspace ‘Example1vhdl: 1 design(s) Rl
=fE Example1 B M
&% Add New File -

1 FHp-Jeweled.bds -
& @/ swzled.vhd
§% Add Mew Library -

+fiff Examplel library

°l LT D————————— D7
- L B
3. - F
K| | o]
< > arial ~iz B r U A~ &~ FJv[—|~ < o
B Files /% Stucture ;23 Resources fil libraries % design flow & swlledbde = sw2ledv & swlledbde [E swlledvhd

>

Cowmpile Architecture "swvzled” of Enticy "swzled”

Top-level unitis) detected:

Entity =» swzled

Cowpile success 0 Errors 0 Warnings Analysis time @ 0.4 [s]
ELBEREAD: Elshoration process.

ELBREAD: Elsboration time 0.0 [s].

x

>
B Consale

Page 11

Figure 1.3 Connecting the eight switches to the eight LEDs

Switches and LEDs 9

Compiling the file sw2led.bde generates the VHDL file sw2led.vhd shown in
Listing 1.2. Alternatively, by selecting the hardware description editor (HDE) the entity
and architecture declarations are automatically generated but you will need to write your
own assignment statements. This can lead to the simpler VHDL program shown in
Listing 1.3 where we can write a single assignment statement using the assignment
operator, <=, to replace the two intermediate assignment statements in Listing 1.2. It is
unnecessary to define the intermediate bus BUS23(7:0).

Listing 1.2 sw2led.vhd
library IEEE;
use IEEE.std logic 1164.all;

entity sw2led is

port (
sw : in STD LOGIC_ VECTOR(7 downto 0) ;
1d : out STD LOGIC_VECTOR(7 downto 0)
)i
end sw2led;

architecture sw2led of sw2led is

---- Signal declarations used on the diagram ----
signal BUS23 : STD LOGIC VECTOR (7 downto 0) ;
begin

---- Terminal assignment ----

-- Inputs terminals
BUS23 <= sw;

-- Output\buffer terminals
1d <= BUS23

end sw2led;

Listing 1.3 sw2led2.vhd
library IEEE;
use IEEE.std logic 1164.all;

entity sw2led2 is
port (
sw : in STD LOGIC VECTOR (7 downto O0) ;
1d : out STD LOGIC VECTOR (7 downto 0)
)
end sw2led2;

architecture sw2led2 of sw2led2 is
begin

1d <= sw;
end sw2led2;

10 Example 1

Note in the entity in Listing 1.3 that the input sw and the output /d are defined to
be of type STD LOGIC VECTOR (7 downto 0). For simulation purposes this type is
defined to have nine possible values. In addition to the usual 0 and 1 the other seven
possible values are U (uninitialized), X (unknown), Z (high impedance), W (weak
unknown), L (weak 0), H (weak 1), and — (don’t care).

In Parts 2 and 3 of the tutorial in Appendix A we show how to synthesize,
implement, and download the design to the FPGA board. In summary, the steps you
follow to implement a digital design on the BASY'S or Nexys-2 board are the following:

Nk W=

7.

Create a new project and design name.

Using the BDE create a logic diagram.

Save and compile the .bde file.

Optionally simulate the design (see Example 2).

Synthesize the design selecting the Spartan3E family and the 3s100etq144
device for the BASYS board and the 3s500efg320 device for the Nexys-2
board.

Implement the design using either basys2.ucf or nexys2.ucf as the custom
constraint file. Check Allow Unmatched LOC Constraints under
Translate and uncheck Do Not Run Bitgen under BitStream. Select JTAG
Clock as the start-up clock under Startup Options.

Use ExPort to download the .bit file to the FPGA board.

At this point the switches are connected to the LEDs. Turning on a switch will
light up the corresponding LED.

Problem

1.1 The four pushbuttons on the BASYS and Nexys-2 boards are connected to pins on
the FPGA using the circuit shown in Fig. 1.4. The value of R is 4.7 kQ on the
BASYS board and 10 kQ on the Nexys-2 board. When the pushbutton is up the
two resistors pull the input down to ground and the input btn(i) to the FPGA is read
as a logic 0. When the pushbutton is pressed the input is pulled up to 3.3 V and the
input btn(i) to the FPGA is read as a logic 1. Create a .bde file using Active-HDL
that will connect the four pushbuttons to the rightmost four LEDs. Compile and
implement the program. Download the .bit file to the FPGA board and test it by
pressing the pushbuttons.

L R

3.3Vo btn(i)

Figure 1.4 Pushbutton connection

2-Input Gates 11

Example 2

2-Input Gates

In this example we will design a circuit containing six different 2-input gates.
Example 2a will show the simulation results using Aldec Active-HDL and Example 2b
will show how to synthesize the program to a Xilinx FPGA on a Digilent board.

Prerequisite knowledge:
Appendix C — Basic Logic Gates
Appendix A — Use of Aldec Active-HDL

2.1 Generating the Design File gates2.bde

Part 4 of the tutorial in Appendix A shows how to connect two inputs @ and b to
the inputs of six different gates using the block diagram editor (BDE) in Active-HDL.
The result is shown in Fig. 2.1. Note that we have named the outputs of the gates the
name of the gate including an underscore. Identifier names in VHDL can contain any
letter, digit, underscore , or $. The identifier can not begin with a digit or be a VHDL
keyword. VHDL is not case sensitive.

The name of this file is gates2.bde. When you compile this file the VHDL
program gates2.vhd shown in Listing 2.1 is generated.

Figure 2.1 Circuit diagram for Example 2

12 Example 2

Listing 2.1 gates2.vhd

-- Example 2a: gates2
library IEEE;

use IEEE.std logic_ 1164.all;

entity gates2 is
port (
a : in STD LOGIC;
b : in STD LOGIC;
and _gate : out STD LOGIC;
nand _gate : out STD LOGIC;
nor_gate : out STD LOGIC;
or_gate : out STD LOGIC;
xnor gate : out STD LOGIC;
xor gate : out STD LOGIC
)i
end gates2;

architecture gates2 of gates2 is
begin
---- Component instantiations ----
and _gate <= b and a;
nand_gate <= not(b and a);
or _gate <= b or a;
nor _gate <= not(b or a);
Xor gate <= b xor a;
xnor_gate <= not (b xor a);

end gates2;

The logic diagram in Fig. 2.1 contains six different gates. This logic circuit is
described by the VHDL program shown in Listing 2.1. The first line in Listing 2.1 is a
comment. Comments in VHDL follow the double dash --. All VHDL programs begin
with an entity statement containing the name of the entity (gates?2 in this case) followed
by a list of all input and output signals together with their direction and type. We will
generally use lower case names for signals. The direction of the input and output signals
is given by the VHDL statements in, out, or inout (for a bi-directional signal).

To describe the output of each gate in Fig. 2.1 we simply write the logic equation
for that gate preceded by the assignment operator, <=. These are concurrent assignment
statements which means that the statements can be written in any order.

2.2 Simulating the Design gates2.bde

Part 4 of the tutorial in Appendix A shows how to simulate this VHDL program
using Active-HDL. The simulation produced in Appendix A is shown in Fig. 2.2. Note
that the waveforms shown in Fig. 2.2 verify the truth tables for the six gates. Also note
that two clock stimulators were used for the inputs a and 5. By making the period of the
clock stimulator for the input a twice the period of the clock stimulator for the input b all
four combinations of the inputs a and b will be generated in one period of the input a.

2-Input Gates 13

oo Qs ®aae w e o[>
M ame Walue Stimul... I I | R | I BT | U (=
el 0 Clock. | il
> b 0 Ceck ¢ [1 I 1
© and_gate 1] I—l—
® nand_gate 1 |—|7
© hor_gate 1] [
© or_gate 1] |
© wnor_gate 1] |
© wor_gate 1] | |
1 B H| 3w
fil libraries % design flow #waveform e,

Figure 2.2 Simulation of logic circuit in Fig. 2.1

2.3 Generating a Top-Level Design

Part 5 of the tutorial in Appendix A shows how to create a top-level design for the
gates?2 circuit. In order to use the constraint files basys2.ucf or nexys2.ucf described in
Example 1 we must name the switch inputs sw(i) and the LED outputs /d(i). This top-
level design, as created in Part 5 of Appendix A is shown in Fig. 2.3. The module gates?
in Fig. 2.3 contains the logic circuit shown in Fig. 2.1. Note that each wire connected to
a bus must be labeled to identify its connection to the bus lines.

.............. U1 T . P

sw(1:0) D— sw(1). + catebs (G2 1d(5:0) -
_____ o end_gatefs
..... SW(D) } b nand_gate } Id(4) N
..... Id(3) N
..... nor—gate > N
..... Id(z) N
..... or_gate > N
..... Id(1) N
..... xnor—gate > N
..... Id(o) N
.....)(Or_gate > N
_______________ e

Figure 2.3 Top-level design for Example 2

14

Example 2

Compiling the top-level design shown in Fig. 2.3 will generate the VHDL
program shown in Listing 2.2. The inputs are now the two rightmost slide switches,
sw(1:0), and the outputs are the six right-most LEDs /d(5:0). To associate these inputs
and outputs with the inputs a and b and the six output in the gates2 component in Fig. 2.1

and Listing 2.1 we use the VHDL port map statement

Ul : gates2

port map (
a => sw(l),
b => sw(0),
and_gate => 1d(5),
nand _gate => 1d(4),
nor gate => 1d(3),
or _gate => 1d(2),
xnor gate => 1d(1),
xor gate => 1d(0)

)i

Listing 2.2 gates2_top.vhd

-- Example 2b: gates2 top
library IEEE;

use IEEE.std logic_ 1164.all;
library EXAMPLE2;

entity gates2 top is
port (
sw : in STD LOGIC VECTOR (1 downto O0) ;
1d : out STD LOGIC VECTOR (5 downto 0)
)
end gates2 top;

architecture gates2 top of gates2 top is
component gates2
port (
a : in std logic;
and gate : out std logic;
b : in std logic;
nand_gate : out std logic;
nor _gate : out std logic;
or gate : out std logic;
xnor_gate : out std logic;
xor gate : out std logic
)

end component;

begin
Ul : gates2
port map (
a => sw(l),
b => sw(0),
and _gate => 1d(5),
nand_gate => 1d(4),
nor gate => 1d(3),
or gate => 1d(2),
xnor gate => 1d(1),
xor_gate => 1d(0)
)
end gates2 top;

2-Input Gates 15

This VHDL port map statement begins with an arbitrary name for the component
in the top-level design. Here we call it Ul. This is followed by the name of the
component being instantiated, in this case gates2 from Listing 2.1. Then using the port
map statement enclosed in parentheses are the inputs and outputs from Listing 2.1
associated with corresponding inputs and outputs in the top-level design in Fig. 2.3. Note
that we connect the input @ in Listing 2.1 to the input sw(1) on the FPGA board. The
input b in Listing 2.1 is connected to sw(0) and the outputs and gate, nand gate,
or_gate, nor_gate, xor_gate, and xnor_gate are connected to the corresponding LED
outputs /d(5:0). These associations can be made in this way in any order. The port map
statement in Listing 2.2 generated from the top-level block diagram are associated in
alphabetical order.

Follow the steps in the tutorial in Appendix A and implement this design on the
FPGA board. Note that when you change the settings of the two right-most slide
switches the LEDs will indicate the outputs of the six gates.

16 Example 3

Example 3

Multiple-Input Gates

In this example we will design a circuit containing multiple-input gates. We will
create a logic circuit containing 4-input AND, OR, and XOR gates. We will leave it as a
problem for you to create a logic circuit containing 4-input NAND, NOR, and XNOR
gates.

Prerequisite knowledge:
Appendix C — Basic Logic Gates
Appendix A — Use of Aldec Active-HDL

3.1 Behavior of Multiple-Input Gates

The AND, OR, NAND, NOR, XOR, and XNOR gates we)
studied in Example 1 had two inputs. The basic definitions hold *@) AND z
for multiple inputs. A multiple-input AND gate is shown in Fig.)]
3.1. The output of an AND gate is HIGH only if all inputs are |
HIGH. To describe this multiple-input AND gate in VHDL we Figure 3.1
could simply write the logic equation as Multiple-input AND gate.

z<=x(1) and x(2) and ... and x(n);

A multiple-input OR gate is shown in Fig. 3.2. The
output of an OR gate is LOW only if all inputs are LOW. Just
As with the AND gate we can write the logic equation as

Figure 3.2
Multiple-input OR gate.

z <= X(1) or x(2) or ... or x(n);

A multiple-input NAND gate is shown in Fig. 3.3. x1)
The output of a NAND gate is LOW only if all inputs are *2 NAND 5
HIGH. We can write the logic equationas "]

z <= not(x(1l) and x(2) and ... and x(n)); Figure 3.3
Multiple-input NAND gate.

A multiple-input NOR gate is shown in Fig. 3.4. The
output of a NOR gate is HIGH only if all inputs are LOW. We *@
can write the logic equation as ()

Figure 3.4
Multiple-input NOR

z <= not(x(1l) or x(2) or ... or x(n));

Multiple-Input Gates 17
A multiple-input XOR gate is shown in Fig. 3.5.

What is the meaning of this multiple-input gate? Following x

the methods we used for the previous multiple-input gates we *

x

’ﬂ
) \
)]
x(4)

can write the logic equation as /
Figure 3.5
z <= x(1) xor x(2) xor ... xor x(n); Multiple-input XOR gate.

1
2
3
4

We will create a 4-input XOR gate in this example to x1)
determine its meaning but first consider the multiple-input *®] o— :
XNOR gate shown in Fig. 3.6. What is the meaning of this xn)
multiple-input gate? (See Problem 3.1 at the end of this
example for the answer.) Following the methods we used
for the previous multiple-input gates we can write the logic

equation as

Figure 3.6
Multiple-input XNOR gate.

z <= not(x(1l) xor x(2) xor ... xor x(n));

or we can use the following gate instantiation statement for an XNOR gate.

Z <= X(1) xnor x(2) xnor ... xnor x(n);

3.2 Generating the Design File gates4.bde

Use the block diagram editor (BDE) in Active-HDL to create the logic circuit
called gates4.bde shown in Fig. 3.7. A simulation of this circuit is shown in Fig. 3.8.
From this simulation we see that the output of an XOR gate is HIGH only if the number
of HIGH inputs is ODD.

o

X(3)

X2 SRR

) »and4_gate

@ moRT I
) ALl UL

CLUORE

©xord_gate -

B

Figure 3.7 Block diagram for gates4.bde

18 Example 3

If you look at the file gates4.vhd that is generated when you compile gates4.bde
you will see that Active-HDL defines separate components for the 4-input AND, OR, and
XOR gates and then uses a VHDL instantiation and port map statement to "wire" them

together.

Alternatively, we could use the HDE editor to write the simpler VHDL program
called gates4b.vhd shown in Listing 3.1 that uses standard VHDL logical operators to
implement the three 4-input gates. This VHDL program will produce the same

simulation as shown in Fig. 3.8.

File Edit Search Wiew ‘workspace Design Simulation waveform Tools indow
Help «
= & QS Qg wa”
Mame Walue | Stimul... oo B0 0 /0 200 4 20 . 300, 350 S
= e Binary .. 3000)2 33 33 48 36 AT 3B 8 A IB NEVEE F N e
& 3] | L
= 42 S I — N S—
= 1) o 1t 1 1 I
= 0] IEpEpEpEp ey

= andd_ |_|

= ord_ J |_|

= word _,—|_|—| l—l l—l_l—l_,—L
Jl |] «]o]» H

Figure 3.8 Simulation of the design gates4.bde shown in Fig. 3.7

Listing 3.1: gates4b.vhd

--Example 3: 4-input gates
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity gates4b is
port (
X : in STD LOGIC_VECTOR (4 downto 1) ;
and4 gate : out STD LOGIC;
or4 gate : out STD LOGIC;
xor4 gate : out STD LOGIC
)
end gates4b;

architecture gates4b of gates4b is
begin
and4 gate <= x(1) and x(2) and x(3) and x(4);
or4 gate <= x(1) or x(2) or x(3) or x(4);
xor4 gate <= x(1) xnor x(2) xnor x(3) xnor x(4);
end gates4;

Multiple-Input Gates 19

3.3 Generating the Top-Level Design gates4_top.bde

Fig. 3.9 shows the block diagram of the top-level design gates4 top.bde. The
module gates4 shown in Fig. 3.9 contains the logic circuit shown in Fig. 3.4. If you
compile gates4 _top.bde the VHDL program gates4 top shown in Listing 3.2 will be
generated. Compile, synthesize, implement, and download this design to the FPGA
board.

_______ it Do)
sW(3:0) OD——x3:0) and4_gate | *- td(1) DR
o ﬁ o _gte -) A
....... . x0r4_gate I Id(o)
....... gat.es4 S o

Figure 3.9 Block diagram for the top-level design gates4 top.bde

Listing 3.2: gates4_top.v
-- Example 2: 4-input gates - top level
library IEEE;
use IEEE.std logic_1164.all;
library EXAMPLE3;

entity gates4 top is
port (
sw : in std logic vector (3 downto 0);
1d : out STD LOGIC_VECTOR (2 downto 0)
)
end gates4 top;

architecture gates4 top of gates4 top is

component gates4
port (
x : in std logic vector (3 downto 0) ;
and4 gate : out std logic;
or4 gate : out std logic;
xor4 gate : out std logic
)i

end component;

begin
Ul : gates4
port map (
and4 gate => 1d(2),
or4 gate => 1d(1),
X => Sw,
xor4 gate => 1d4(0)
)i
end gates4 top;

20 Example 3
Problem
3.1 Use the BDE to create a logic circuit containing 4-input NAND, NOR, and XNOR

3.2

gates. Simulate your design and verify that the output of an XNOR gate is HIGH
only if the number of HIGH inputs is EVEN. Create a top-level design that connects
the four inputs to the rightmost four slide switches and the three outputs to the three
rightmost LEDs. Implement your design and download it to the FPGA board.

The circuit shown at the right is for a 2 x 4 decoder. x[1] x[0]
Use the BDE to create this circuit and simulate it

using Active-HDL. Choose a counter stimulator for K? K?
x(1:0) that counts every 20 ns, set en to a forced

value of 1, and simulate it for 100 ns. Make a truth) yIo]
table with (x(1), x(0)) as the inputs and y(0:3) as the
outputs. What is the behavior of this decoder? —)

%3 yi2l
%3 yi3l

en

Equality Detector 21

Example 4

Equality Detector

In this example we will design a 2-bit equality detector using two NAND gates
and an AND gate.

Prerequisite knowledge:
Appendix C — Basic Logic Gates
Appendix A — Use of Aldec Active-HDL

4.1 Generating the Design File eqdet2.bde

The truth table for a 2-input XNOR gate is shown in Fig. 4.1. Note that the
output z is 1 when the inputs x and y are equal. Thus, the XNOR gate can be used as a 1-
bit equality detector.

XNOR

x y| z

y o 1 o
1 0l o

z=~(x"y) 1 1| 1

Figure 4.1 The XNOR gate is a 1-bit equality detector

By using two XNOR gates and an AND gate we can design a 2-bit equality
detector as shown in Fig. 4.2. Use the BDE to create the file eqdet2.bde using Active-
HDL.

Figure 4.2 Block diagram of a 2-bit equality detector, eqdet2.bde

22 Example 4

If you compile the file eqdet2.bde Active-HDL will generate the VHDL program
eqdet2.vhd shown in Listing 4.1. A simulation of egdet2.bde is shown in Fig. 4.3. Note
that the output eq is 1 only if a(1:0) is equal to b(1:0).

Listing 4.1: eqdet2.vhd

-- Title : eqgdet2
library IEEE;

use IEEE.std logic 1164.all;

entity eqgdet2 is

port (
a : in STD LOGIC_ VECTOR(1 downto 0) ;
b : in STD_LOGIC_VECTOR(]_ downto 0) ;
eq : out STD LOGIC
)
end eqgdet2;

architecture eqgdet2 of egdet2 is
signal eql : STD LOGIC;
signal eg2 : STD LOGIC;

begin
egl <= not(b(1l) xor a(l));

eg2 <= not(b(0) xor a(0));
eq <= eqg2 and eql;

end eqgdet2;

File Edit Search Mew ‘Workspace Design Simulation Waveform Tools Window
Help #*
= F QD ® Q@& W
M arne Yalue | Stirnulator v B8O 100 1RO, 200 . 250 . 300 . 3EO L
+ B o5 Binan Counter 30 }'-:1){2 }'-:3 }'-:'3' i
A% b Binary Counter
el ___T r__T | | | L__
w g2 S5 A A o
“ e T T]
Al | 2] «fm] H

Figure 4.3 Simulation of the 2-bit equality detector, eqdet2.bde

Create a top-level design called egdet? top.bde that connects a(1:0) and H(1:0) to
the rightmost four slide switches and connects the output eg to /d(0). Implement your
design and download it to the FPGA board.

2-to-1 Multiplexer: if Statement 23

Example 5

2-to-1 Multiplexer: if Statement

In this example we will show how to design a 2-to-1 multiplexer and will
introduce the VHDL if statement. Section 5.1 will define a multiplexer and derive the
logic equations for a 2-to-1 multiplexer. Section 5.2 will illustrate the use of two
versions of the VHDL if statement.

Prerequisite knowledge:
Karnaugh Maps — Appendix D
Use of Aldec Active-HDL — Appendix A

5.1 Multiplexers

An n-input multiplexer (called a MUX) is an n-way digital switch that switches
one of n inputs to the output. A 2-input multiplexer is shown in Fig. 5.1. The switch is
controlled by the single control line s. This bit selects one of the two inputs to be
"connected" to the output. This means that the logical value of the output y will be the
same as the logical value of the selected input.

From the truth table in Fig. 5.1 we see that y=a ifs=0and y=»bifs=1. The
Karnaugh map for the truth table in Fig. 5.1 is shown in Fig. 5.2. We see that the logic
equation for y is

y= ~s&al| s&b (5.1)
Note that this logic equation describes the s ably
circuit diagram shown in Fig. 5.3. 0 00| O
0 01| O0
AT 0101
ab MUX >y 011|1
o o0 01 M 10 b—» 100l 0
0 l 1 1 l 1 01 1
1 1100
1 | 1 1| S 111)1

Figure 5.1 A 2-to-1 multiplexer
y=~s&a|s&b

Figure 5.2
K-map for a 2-to-1 multiplexer

24 Example 5

Use the BDE to create the block diagram mux21.bde shown in Fig. 5.3 that
implements logic equation (5.1). Compiling mux21.bde will generate a VHDL file,
mux21.vhd, that is equivalent to Listing 5.1. A simulation of mux21.bde is shown in Fig.
5.4. Note in the simulation that y=a ifs=0and y=bifs=1.

Figure 5.3 Block diagram for a 2-to-1 multiplexer, mux21.bde

Listing 5.1 Example5a.vhd

-- Example 5a: 2-to-1 MUX using logic equations
library IEEE;

use IEEE.std logic 1164.all;

entity mux21l is

port (
a in STD_LOGIC;
b : in STD LOGIC;
s in STD_ LOGIC;
Yy out STD LOGIC

) i

end mux21;

architecture mux2l of mux21l is
signal aout : STD LOGIC;
signal bout : STD LOGIC;
signal nots : STD_ LOGIC;

begin
aout <= nots and a;
bout <= s and b;
nots <= not(s) ;
y <= bout or aout;
end mux21;

2-to-1 Multiplexer: if Statement 25

Eile Edit Search Yew ‘Workspace Design Simulaktion Waseform

Tools Window Help £
|| tEeleo|fashaaq?
Mame Walue | Stimulatar 20 . 40, BO . 8O ., DS
B 3 Cock ¢ [| [=
= b Clock [I Y
B3 Clock |
=y 3 L | L |

">
1] [»]«]e]|»

/)

Figure 5.4 Simulation of the 2-to-1 MUX in Fig. 5.3

5.2 The VHDL if statement

The behavior of the 2 x 1 multiplexer shown in Fig. 5.1 can be described by the
VHDL statements

if s = '0' then
Yy <= a;
else
y <= b;

We saw that the assignment statements in VHDL using the assignment operator
<= are concurrent and execute in parallel. On the other hand the if statement is an
example of a procedural, or sequential, statement. Procedural statements must be
contained within a process and are executed in the order that they appear in the code.
Thus, the VHDL if statement must be contained in a process as shown in Listing 5.2.

The process begins with the statement

<label>: process(<sensitivity lists>)

where the sensitivity list contains a list of all signals that will affect the outputs generated
by the process block and the label is an arbitrary name of your choice following typical
variable naming conventions. In Listing 5.2 the sensitivity list contains the inputs a, b,
and s, so that a change in any of these three inputs will affect the output y. If you do not
include a signal in the sensitivity list then the circuit that is generated may not be the one
that you want. This is a common error that is sometimes hard to detect. The VHDL code
in Listing 5.2 will be compiled to produce the logic circuit shown in Fig. 53. A
simulation of the VHDL code in Listing 5.2 will produce the same waveform as shown in
Fig. 5.4.

26 Example 5

Listing 5.2 Example4b.vhd

-- Example 4b: 2-to-1 MUX using if statement
library IEEE;

use IEEE.STD LOGIC 1164.all;

entity mux21b is

port (
in STD LOGIC;
in STD LOGIC;
: in STD LOGIC;
: out STD LOGIC

N oW

) i

end mux21lb;

architecture mux21b of mux21b is

begin
pl: process (a, b, s)
begin
if s = '0' then
y <= a;
else
y <= b;
end if;

end process;
end mux21lb;

Create a top-level design called mux21 top.bde that connects a and b to the
rightmost two slide switches, connects s to bfn(0), and connects the output y to /d(0).
Implement your design and download it to the FPGA board. Test the operation of the
multiplexer by changing the position of the toggle switches and pressing pushbutton
btn(0).

Quad 2-to-1 Multiplexer 27

Example 6

Quad 2-to-1 Multiplexer

In this example we will show how to design a quad 2-to-1 multiplexer. In Section
6.1 we will make the quad 2-to-1 multiplexer by wiring together four of the 2-to-1
multiplexers that we designed in Example 5. In Section 6.2 we will show how the quad
2-to-1 multiplexer can be designed using a single VHDL if statement. Finally, in Section
6.3 we will show how to use a VHDL parameter to define a generic 2-to-1 multiplexer
with arbitrary bus sizes.

Prerequisite knowledge:
Example 5 — 2-to-1 Multiplexer

6.1 Generating the Design File mux42.bde

By using four instances of the 2-to-1 MUX, mux21.bde, that we designed in
Example 5, we can design a quad 2-to-1 multiplexer as shown in Fig. 6.1. Use the BDE
to create the file mux24.bde using Active-HDL. Note that you will need to add the file
mux21.bde to your project.

SRS 1 B SRR P
SRR LI § BRELTC/E B
S B) SRR
AN | SEEE! EERE I
b e
iy /BRSNS
SRR a2 |l @
SR B -l SRR
ol frmet
SRS B B SRR D
SRR CINDI N § BRELTGIE B
S B Sl SRR
v frme@t s
SRS B B - SRR D
SRR) | @
SN B I SRR
Mty

Figure 6.1 The quad 2-to-1 MUX, mux24.bde, contains four 2-to-1 MUXs

28 Example 6

If you compile the file mux24.bde Active-HDL will generate the VHDL program
mux24.vhd shown in Listing 6.1. A simulation of mux24.bde is shown in Fig. 6.2. Note
that the output y(3:0) will be either a(3:0) or »(3:0) depending on the value of s.

Listing 6.1 Example6a.vhd

-- Example 6a: mux24
library IEEE;

use IEEE.std logic 1164.all;
library EXAMPLESG;

entity mux24 is
port (
in std logic;
in STD LOGIC_ VECTOR (3 downto 0) ;
: in STD LOGIC VECTOR (3 downto 0)
y : out STD LOGIC VECTOR (3 downto 0

oo ®m

)
) i

end mux24;

architecture mux24 of mux24 is
component mux21l

port (
a in std logic;
b in std logic;
s in std logic;
y out std logic

) i

end component;

begin
Ul : mux21
port map (
a => a(3), b =>Db(3), s =>8, v => vy(3)
) i

U2 : mux2l
port map (
a => af(2), b =>Db(2), s =>8, v => y(2)
)

U3 : mux21
port map (
a =>af(l), b =>Db(l), s => 8, yv => y(1)
)i

U4 : mux21
port map (
a => a(0), b =>Db(0), s => 8, y => y(0)
)i

end mux24;

Quad 2-to-1 Multiplexer 29

File Edit Search ‘Wiew ‘Workspace Design Simulation Waveform Tools
Window Help 4
= | Qo ®aQae w”
Mame Walue | Stimulator [T L B L B U L
H g <=1EHE 5 —
H = h <=T1EHa 3A
s Clock [S I T R e
5oy
< | >|«|°|»H

Figure 6.2 Simulation of the quad 2-to-1 MUX in Fig. 6.1

Use the BDE to create the top-level design called mux21 top.bde shown in Fig.
6.3. Note that a(3:0) are connected to the four leftmost slide switches, h(3:0) are
connected to the rightmost four slide switches, and »(3:0) are connected to the four
rightmost LEDs. Also note that s is connected to btn(0), and the input btn(0:0) must be
declared as a std_logic vector, even though there is only one element, so that we can use
the constraint file basys2.ucf or nexys2.ucf without change. Implement your design and
download it to the FPGA board. Test the operation of the quad 2-to-1 multiplexer by
setting the switch values and pressing pushbutton btn(0).
If you compile the file mux24 top.bde Active-HDL will generate the VHDL program
mux24_top.vhd shown in Listing 6.2. A simulation of mux24 top.bde is shown in Fig.
6.4.

el @) o

Figure 6.3 Top-level design for testing the quad 2-to-1 MUX

Listing 6.2 Example6b.vhd

-- Example 6b: mux24 top
library IEEE;

use IEEE.std logic 1164.all;
library EXAMPLESG;

entity mux24 top is
port (
btn : in STD LOGIC_VECTOR (0 downto 0) ;
sw : in std logic vector (7 downto 0);
1d : out std logic vector (3 downto 0)
)i

end mux24_top;

30 Example 6

Listing 6.2 (cont.) Example6b.vhd

architecture mux24 top of mux24 top is
component mux24

port (
a : in std logic vector (3 downto 0);
b : in std logic_vector (3 downto 0);
s : in std logic;
y : out std logic vector (3 downto 0)

) i

end component;

begin
Ul : mux24
port map (

a(0) => sw(4),
a(l) => sw(5),
a(2) => sw(e6),
a(3) => sw(7),
b(0) => sw(0),
b(1) => sw(l),
b(2) => sw(2),
b(3) => sw(3),
s => btn(0),
y => 1d

) i

end mux24 top;

File Edit Search Mew ‘Morkspace Design Simulation Waveform Tools
Window Help &
= = QL RLag ”
M arne Walue | Stimulator 20 0 40 o B0 . B0 . DS
+ B gy <= 16454 54 =1

= = bin

o e ipipgininiiy

%8 |d
4 | > |«]o]» H

Figure 6.4 Simulation of mux24_top.bde in Fig. 6.1

6.2 A Quad 2-to-1 Multiplexer Using an if Statement

In Listing 5.2 of Example 5 we used a VHDL if statement to implement a 2-to-1
MUX. Listing 6.3 is a direct extension of Listing 5.2 where now the inputs and outputs
are 4-bit values rather that a single bit. The VHDL program shown in Listing 6.3 will
produce the same simulation as shown in Fig. 6.2. The module mux24b defined by the
VHDL program in Listing 6.3 could be used in place of the mux24 module in the top-
level design in Fig. 6.3

Quad 2-to-1 Multiplexer 31

Listing 6.3 mux24b.vhd
--Example 6c: Quad 2-to-1 MUX using if statement
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity mux24b is
port (
: in STD LOGIC_VECTOR (3 downto 0);
: in STD LOGIC_VECTOR (3 downto 0);
: in STD LOGIC;
: out STD LOGIC VECTOR(3 downto 0)

N on oo

) i
end mux24b;

architecture mux24b of mux24b is
signal s4: STD LOGIC VECTOR (3 downto 0);

begin
pl: process (a, b, s)
begin
if s = '0' then
y <= a;
else
y <= b;
end if;

end process;
end mux24b;

6.3 Generic Multiplexers: Parameters

We can use the VHDL generic statement to design a generic 2-to-1 multiplexer
with input and output bus widths of arbitrary size. Listing 6.4 shows a VHDL program
for a generic 2-to-1 MUX.

Note the use of the generic statement that defines the bus width N to have a
default value of 4. This value can be overridden when the multiplexer is instantiated as
shown in Listing 6.5 for an 8-line 2-to-1 multiplexer called M8. The parameter override
clause is automatically included in the port map statement when you copy it in Active-
HDL as shown in Listing 6.5. We will always use upper-case names for parameters. The
simulation of Listing 6.5 is shown in Fig. 6.5.

If you compile the VHDL program mux2g.vhd shown in Listing 6.4 it will
generate a block diagram for this module when you go to BDE. If you right-click on the
symbol for mux2g and select Properties, you can change the default value of the
parameter N by selecting the Parameters tab and entering an actual value for V.

32

Example 6

Listing 6.4 mux2g.vhd

-- Example 6d: Generic 2-to-1 MUX using a parameter
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity mux2g is

generic (N:integer := 4);

port (
in STD_LOGIC_ VECTOR(N-1 downto O0) ;
in STD LOGIC VECTOR(N-1 downto 0) ;
in STD LOGIC;
out STD LOGIC VECTOR(N-1 downto 0)

N oW

) i

end mux2g;

architecture mux2g of mux2g is

begin
pl: process (a, b, s)
begin
if s = '0' then
Yy <= aj;
else
y <= b;
end if;

end process;

end mux2g;

Listing 6.5 mux28.vhd

--Example 6e: 8-1line 2-to-1 MUX using a parameter
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity mux28 is

port (
in STD LOGIC_VECTOR (7 downto 0) ;
in STD LOGIC VECTOR(7 downto 0) ;
in STD LOGIC;
out STD LOGIC VECTOR (7 downto 0)

N on oo

) i

end mux28;

architecture mux28 of mux28 is
component mux2g is

generic (N: positive := 4);

port (
in STD LOGIC VECTOR(N-1 downto 0) ;
in STD_LOGIC_VECTOR(N—l downto 0) ;
in STD LOGIC;
out STD LOGIC VECTOR (N-1 downto 0)

N oo

)i

end component;

Quad 2-to-1 Multiplexer 33

Listing 6.5 (cont.) mux28.vhd

begin

M8: mux2g generic map(N => 8) port map

(a => a,
b => b,
s => s,
Yy =>Y

) i

end mux28;

File Edit Search Wew ‘Workspace Design Simulation ‘Waweform Tools Window Help L4
||| fEBERow(has ® S § € AR |

I ame ‘Yalue | Shirmulator vE0 0 40 B0 @0 W0 o 120, W0 180, 1800 NS

B 3 <=TEH3a 334 =

™ b <=1BHCE 3C8

o s Gk [|1 [| T 1 [| T
Hey 38 4Cs Waa os e os Ga s A os

1 | plsolsf

[4

Figure 6.5 Simulation result from the VHDL program in Listing 6.5

34 Example 7

Example 7

4-to-1 Multiplexer

In this example we will show how to design a 4-to-1 multiplexer. In Section 7.1
we will make a 4-to-1 multiplexer by wiring together three of the 2-to-1 multiplexers that
we designed in Example 5. In Section 7.2 we will derive the logic equation for a 4-to-1
MUX. In Section 7.3 we will show how a 4-to-1 multiplexer can be designed using a
single VHDL case statement and in Section 7.4 we design a quad 4-to-1 multiplexer.

Prerequisite knowledge:
Example 5 — 2-to-1 Multiplexer

7.1 Designing a 4-to-1 MUX Using 2-to-1 Modules

A 4-to-1 multiplexer has the truth table shown in Fig. 7.1 By
using three instances of the 2-to-1 MUX, mux21.bde, that we

designed in Example 5, we can design a 4-to-1 multiplexer as 0 0 |cO
shown in Fig. 7.2. Use the BDE to create the file mux41.bde (1) 8 C;
using Active-HDL. Note that you will need to add the file 11 23

mux21.bde to your project.
In Fig. 7.2 when s(1) = 0 it is v, the output of U2 Figure 7.1
that gets through to z. If s(0) = 0 in U2 then it is ¢(0) Truth table for a 4-to-1 MUX
that gets through to v and therefore to z. If s(0) =1 in
U2 then it is ¢(1) that gets through to v and therefore to z.

................. Uz
eENBT A
........... + ol
NN (DI § S T DR R
USRS i SO SRR DR
OSSN I R T e

SUD:}D R e E.-Ij:._._b
...... oot
A - BEREER R N IR R
AN N N § b
SO NNN S EON § .
N)] .
L R

Figure 7.2 The 4-to-1 MUX, mux41.bde, contains four 2-to-1 MUXs

4-to-1 Multiplexer

If, on the other hand, s(1) = 1 in U1 then it is w, the output of U3 that gets through
to z. If s(0) = 0 in U3 then it is ¢(2) that gets through to w and therefore to z. If s(0) =1
in U3 then it is ¢(3) that gets through to w and therefore to z. Thus you can see that the

circuit in Fig. 7.2 will implement the truth table in Fig. 7.1.

When you compile the file mux41.bde Active-HDL will generate the VHDL
program mux41.v shown in Listing 7.1. A simulation of mux41.bde is shown in Fig. 7.3.
Note that the output z will be one of the four inputs ¢(3:0) depending on the value of

s(1:0).

Listing 7.1 mux41.vhd

-- Example 7a: 4-to-1 MUX using module instantiation
library IEEE;

use IEEE.std logic_ 1164.all;

library EXAMPLE7;

entity mux4la is
port (
¢ : in STD LOGIC VECTOR(3 downto 0);
s : in STD LOGIC VECTOR(1 downto 0) ;
z : out std logic
)

end mux4la;

architecture mux4la of mux4la is
component mux21l
port (
in std logic;
in std logic;
: in std logic;
: out std logic

N oW

) i

end component;

signal v : std logic;
signal w : std logic;

begin
Ul : mux21l
port map (
a =>v, b=>w, s =>s5(1), v => z

) i

U2 : mux21l
port map (
a =>c(0), b =>c(l), s =>8(0), v =>1vV

) i

U3 : mux2l
port map (
a =>c(2), b =>c(3), s =>8(0), v =>w
)

end mux4la;

36

Example 7

File Edit Search Yiew ‘Workspace Design Simulation Waweform Tools Window Help <
ey= hQs s ®e e w B I
M ame Yalue | Stimulatar v 20 . 40 4 EBD . 80 Wo o« 120, WO G0 . B0 4 200 4 @0, 230 . NE
S] C Binary Co... 42 b3 b h{E =1
B3] il |
v c[2) 1 | I [
= (1] i0 |
> o) 0 | | L
=l 5 cH |- GRS I G (D (N D N (D (R I R (R |
= 1) 1 [o o
(0] 1 | I | | I | | I I | | I [
A I I — LI 1
"o I [L
® 2 L T I | I I []

| ARIEIC

If you were going to create this top-level design using HDE instead of BDE you
would begin by defining the inputs ¢(3:0) and s(1:0) and the output z and the two signals
v and w. You would then “wire” the three components together using the three port map

Figure 7.3 Simulation of the VHDL program in Listing 7.1

statements shown in Listing 7.1.

The easiest way to generate this port map statement is to first compile the file
mux21.vhd from Example 5 using Active-HDL, expand the library icon (click the plus
sign), right click on mux21, and select Copy VHDL Instantiation as shown in Fig. 7.4.

Paste this into your top-level mux41.vhd file.

@ Active-HDL 7.2 (Example?vhdl ,Example7) - C:\LBEWerilog\Example7vhd\Example 7\com pilelmux21.vhd

Eile Edit Search Wiew Workspace Design Simulation Tools Window Help

Bred g8 @F¥ DOoOREEHYOSR B &S| e owop 100ns
= iE & = H | ITE B 49 L]
[@mo2t (1) KN CE Design unit header —-
21 library IEEE:
0[unsorted 2z use IEEE.std logic 1164.all;
Workspace 'Example7vhdl’: 1 design(s) 25
, Example? =4
&% Add New File 25 entity mux2i is
1 e fmux4la.bde =13 porti
2 Hegdmusctbde 27 a : in STD_LOBIC:
+ @ Szl .vhd 5 b : in STD_LOBIC:
"i‘ Add Mew Library =3 S : in STD_LOBIC:
_“ Example7 library 30 ¥ ¢ out SID LOGIC
Ny Multiple-Unit 1)
. Wﬁ 52 end mwuxzl;
A mudtaml [E. view Source
& Set as Top-Level tecture muxdl of mux2l is
B3] Generate TestBench...
Signal declarations used on the diagram ————
i\ Generate Block Description for Simulink...
Add Mew Architecture. . 1 mout : STD LOBIC:
Edit Symbal 1l bout : STD LOBIC:
B Copy Dedaration Chi¢ L nots : STD_LOBIC:
Copy SystemC Class Declaration
Copy YHDL Instantistion
Copy Veriog Instantiation Component instantiations -—--—-—
45
16 aout <= nots and a;
477
4 IS Tul henr ez = oand ke |
4
21 Files ¥ Structure &3 Resources % design flow = mux2l.vhd

Figure 7.4 Generating a module instantiation prototype

4-to-1 Multiplexer 37

At this point you would have the statement

Labell : mux21

port map (
a => a,
b => b,
s => g,
y =>Y

Make three copies of this prototype and change the name of Labell to Ul, U2,
and U3 in the three statements. Now you just “wire up” each input and output variable
by changing the values in the parentheses to the signal that it is connected to. For
example, the mux Ul input a is connected to the wire v so we would write a => v. Ina
similar way the mux input b is connected to wire w and the mux input s is connected to
input s(1). The mux output y is connected to the output z in Fig. 7.2. Thus, the final
version of this port map statement would be

Ul : mux21l

port map (
a => v,
b => w,
s => s(1),
Yy => z

)i

The other two modules, U2 and U3, are “wired up” using similar port map
statements.

7.2 The Logic Equation for a 4-to-1 MUX

The 4-to-1 MUX designed in Fig. 7.2 can be represented by the logic symbol
shown in Fig. 7.5. This multiplexer acts like a digital switch in which one of the inputs
¢(3:0) gets connected to the output z. The switch is controlled by the two control lines
5(1:0). The two bits on these control lines select one of the four inputs to be "connected"
to the output. Note that we constructed this 4-to-1 multiplexer using three 2-to-1
multiplexers in a tree fashion as shown in Fig. 7.2.

- w=c@) zh- - -

Figure 7.5 A 4-to-1 multiplexer

38 Example 7
Recall from Eq. (5.1) in Example 5 that the logic equation for a 2-to-1 MUX is
given by
y= ~s &al| s&b (7.1)

Applying this equation to the three 2-to-1 MUXs in Fig. 7.2 we can write the
equations for that 4 x 1 MUX as follows.

v = ~s0 & cO | s0 & cl
w=~s80 & c2 | s0 & c3
z=~sl &v | sl&w
z = ~81 & (~80 & cO | 80 & c1) | 81 & (~s0 & c2 | s0 & c3)
or
z = ~81 & ~s0 & cO
| ~s1 & s0 & cl (7.2)
| s1 & ~s0 & c2
| s1 & s0 & c3

Equation (7.2) for z also follows from the truth table in Fig. 7.1. Note that the
tree structure in Fig. 7.2 can be expanded to implement an 8-to-1 multiplexer and a 16-to-
1 multiplexer.

A VHDL program that implements a 4-to-1 MUX using the logic equation (7.2) is
given in Listing 7.2. A simulation of this program will produce the same result as in Fig.
7.3 (without the wire signals v and w).

Listing 7.2 mux41b.vhd

-- Example 7b: 4-to-1 MUX using logic equation
library IEEE;

use IEEE.STD LOGIC 1164.all;

entity mux41b is
port (
¢ : in STD LOGIC VECTOR (3 downto 0);
s : in STD LOGIC VECTOR (1l downto 0) ;
z : out STD LOGIC
)

end mux4lb;

architecture mux41b of mux41lb is

begin
z <= (not s(1) and not s(0) and c(0))
or (nmot s(1) and s(0) and c(1))
or (s(1) and not s(0) and c(2))
or (s(1) and s(0) and c(3));
end mux4lb;

4-to-1 Multiplexer 39

7.3 4-to-1 Multiplexer: case Statement

The same 4-to-1 multiplexer defined by the VHDL program in Listing 7.2 can be
implemented using a VHDL case statement. The VHDL program shown in Listing 7.3
does this. The case statement in Listing 7.3 directly implements the definition of a 4-to-1
MUX given by the truth table in Fig. 7.1. The case statement is an example of a
procedural statement that must be within a process. A typical line in the case statement,
such as

when "10" => z <= c(2);

will assign the value of ¢(2) to the output z when the input value s(1:0) is equal to 2
(binary 10).

In the case statement the value following the when statement represents the value
of the case parameter, in this case the 2-bit input s. These values are the same as the case
parameter type by default, in this case STD LOGIC VECTOR(1:0). If you want to
write a hex value you precede the number with X as in X”4"” which is a hex value 4.
However, hex values are in multiples of 4 bits, therefore X”4" represents a binary /010.
Since s is only 2 bits, we can’t use the hex notation because the bus sizes would not
match.

Listing 7.3 mux41c.vhd

-- Example 7c: 4-to-1 MUX using case statement
library IEEE;

use IEEE.STD LOGIC 1164.all;

entity mux4lc is
port (
¢ : in STD LOGIC VECTOR(3 downto 0);
s : in STD LOGIC VECTOR(1 downto 0) ;
z : out STD LOGIC
)

end mux4lc;

architecture mux4lc of mux4lc is

begin
pl: process(c, s)
begin

case s is

when "00" => z <= c(0);
when "01" => z <= c(1);
when "10" => z <= c(2);
when "11" => z <= c(3);
when others => z <= c(0);

end case;
end process;
end mux4lc;

40 Example 7

All case statements should include a when others line as shown in Listing 7.3.
This is because all cases need to be covered and while it looks as if we covered all cases
in Listing 7.3, recall that VHDL actually defines nine possible values for each bit of type
STD LOGIC VECTOR.

A simulation of the program in Listing 7.3 will produce the same result as in Fig.
7.3 (without the wire signals v and w).

7.4 A Quad 4-to-1 Multiplexer

To make a quad 4-to-1 multiplexer we could combine four 4-to-1 MUXs as we
did for a quad 2-to-1 multiplexer module in Fig. 6.1 of Example 6. However, it will be
easier to modify the case statement program in Listing 7.3 to make a quad 4-to-1 MUX.
Because we will use it in Example 10 we will define a single 16-bit input x(15:0) and we
will multiplex the four hex digits making up this 16-bit value.

Listing 7.4 is a VHDL program for this quad 4-to-1 multiplexer. Note that the
four hex digits making up the 16-bit value of x(15:0) are multiplexed to the output z(3:0)
depending of the value of the control signal s(1:0). A simulation of this quad 4-to-1
multiplexer is shown in Fig. 7.6 and its BDE symbol is shown in Fig. 7.7.

Listing 7.4 mux44.vhd

-- Example 7d: quad 4-to-1 MUX
library IEEE;

use IEEE.STD LOGIC 1164.all;

entity mux44 is
port (

X

: in STD LOGIC VECTOR (15 downto 0) ;
: in STD LOGIC VECTOR(1 downto 0) ;
: out STD LOGIC VECTOR (3 downto 0)

N

) i

end mux44;

architecture mux44 of mux44 is

begin
pl: process(x, s)
begin
case s is

when "00" => z <= x(3 downto 0);
when "01" => z <= x(7 downto 4);
when "10" => z <= x(11 downto 8);
when "11" => z <= x(15 downto 12);
when others => z <= x(3 downto 0);

end case;
end process;

end mux44;

4-to-1 Multiplexer

File Edit Search Wew ‘Workspace Design Simulation Wawveform Tools
Window Help &
= h Qo Q& w”
Mame Walue | Stirmulator 1« ED ' oo . fEn . ns
+ By <="1E#89. 1530E —
-l B g Binam Co. ¥0 1 2 X3 ko X1 ¥ N3 M0
) S e B e
= 5(0) [S S N e
e B 4A f3 iz 4B a3 s B
al | lafm]e H

Figure 7.6 Simulation of the quad 4-to-1 MUX in Listing 7.4

sy |

Figure 7.7 A quad 4-to-1 multiplexer

42 Example 8

Example 8

Clocks and Counters

The Nexys-2 board has an onboard 50 MHz clock. The BASYS board has a
jumper that allows you to set the clock to 100 MHz, 50 MHz, or 25 MHz. All of the
examples in this book will assume an input clock frequency of 50 MHz. If you are using
the BASYS board you should remove the clock jumper, which will set the clock
frequency to 50 MHz. This 50 MHz clock signal is a square wave with a period of 20 ns.
The FPGA pin associated with this clock signal is defined in the constraints file
basys2.ucf or nexys2.ucf with the name mclk.

In this example we will show how to design an N-bit counter in VHDL and how
to use a counter to generate clock signals of lower frequencies.

Prerequisite knowledge:
Appendix A — Use of Aldec Active-HDL

8.1 N-Bit Counter

The BDE symbol for an N-bit counter is shown in Fig. 8.1. If the input c/r = 1
then all NV of the outputs ¢(i) are cleared to zero asynchronously, i.e., regardless of the
value of the input clk. If clr = 0, then on the next rising edge of the clock input c/k the N-
bit binary output g(N-1:0) will be incremented by 1. That is, on the rising edge of the
clock the N-bit binary output g(N-1:0) will count from 0 to N-1 and then wrap around to
0.

ek gqN-1:0) - -

+clr

.. counter - - -
Figure 8.1 An N-bit counter

The VHDL program shown in Listing 8.1 was used to generate the symbol shown
in Fig. 8.1. Note that the sensitivity list of the process contains the signals clk and clr.
This means that the if statement within the process will execute whenever either clr or clk
goes high. If clr goes high then the output g(N-1:0) will go to zero. The statement

count <= (others => '0');

sets all bits of count(N-1:0) to zero.

The phrase
clk'event and clk = '1'

Clocks and Counters 43

in the elsif clause in Listing 8.1 means that there was an event on the signal clk, i.e., it
changed value and it ended up at 1. That is, there was a rising edge of the clock. Thus, if
clr = 0 and there is a rising edge of the clock signal c/k then the output g(N-1:0) will be
incremented by 1. Note that count(N-1:0) is defined to be a signal in Listing 8.1. This is
necessary because the output ¢ can not be read and therefore you can not use a statement

such as
g <=4g + 1;

in Listing 8.1. Rather you must increment the signal coun#(N-1:0) within the process in
Listing 8.1 and then assign the output g to count outside the process.

Listing 8.1 counter.vhd

-- Example 8a: N-bit counter
library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC unsigned.all;

entity counter is
generic (N : integer := 8);
port (
clr : in STD LOGIC;
clk : in STD LOGIC;
g : out STD LOGIC VECTOR (N-1 downto 0)
)

end counter;

architecture counter of counter is
signal count: STD LOGIC_VECTOR (N-1 downto 0) ;

begin
process (clk, clr)
begin
if clr = '1l' then
count <= (others => '0');
elsif clk'event and clk = '1l' then
count <= count + 1;
end if;

end process;

g <= count;
end counter;

The default value of the parameter N in Listing 8.1 is 4. A simulation of this 4-bit
counter is shown in Fig. 8.2. Note that this counter counts from 0 to F and then wraps
around to 0. To instantiate an 8-bit counter from Listing 8.1 that would count from 0 —
255 (or 00 — FF hex) you would use an instantiation statement something like

Cntlé : counter generic map (
N => 16
)
port map (

clr => clr, clk => clk, g => g
)i

44 Example 8

You can also set the value of the parameter N from the block diagram editor
(BDE) by right-clicking on the symbol in Fig. 8.1 and selecting Properties and then the
Parameters tab. Note in Listing 8.1 that we have included the additional use statement

use IEEE.STD LOGIC unsigned.all;

This statement will include the library file unsigned.vhd in the project. This is required
in order to use the + sign to implement the counter by adding 1 to the signal count.

Eile Edit Seatch Miew ‘Workspace Design Simulation Waweform Tools MWindow
Help «
=x= F QS | Q&
M arne Y alue | Stirmulator v 80 WO 150, 2000, 250 . 300 . 350 NS
> ck cock T UL UL

B ol Formula | |
518 g
* ql3) | S
® g2 S) — N E—
= ql1) S [) S) Y
= q0) 3 oy
dl | | «lo|» H

Figure 8.2 Simulation of a 4-bit counter using Listing 8.1

In the simulation in Fig. 8.2 note that the output ¢(0) is a square wave at half the
frequency of the input clk. Similarly, the output g(1) is a square wave at half the
frequency of the input ¢(0), the output ¢(2) is a square wave at half the frequency of the
input ¢(1), and the output ¢(3) is a square wave at half the frequency of the input ¢(2).
Note how the binary numbers ¢(3:0) in Fig. 8.2 count from 0000 to 1111.

The simulation shown in Fig. 8.2 shows how we can obtain a lower clock
frequency by simply using one of the outputs g(i). We will use this feature to produce a
24-bit clock divider in the next section.

8.2 Clock Divider

The simulation in Fig. 8.2 shows that the outputs ¢(i) of a counter are square
waves where the output ¢(0) has a frequency half of the clock frequency, the output ¢(1)
has a frequency half of ¢(0), etc. Thus, a counter can be used to divide the frequency f of
a clock, where the frequency of the output g(i) is f, = f / 2" The frequencies and

periods of the outputs of a 24-bit counter driven by a 50 MHz clock are shown in Table
8.1. Note in Table 8.1 that the output ¢(0) has a frequency of 25 MHz, the output ¢(17)
has a frequency of 190.73 Hz, and the output g(23) has a frequency of 2.98 Hz.

Clocks and Counters 45

Table 8.1 Clock divide frequencies

q()) | Frequency (Hz) | Period (ms)

i 50000000.00 0.00002

0 25000000.00 0.00004
1 12500000.00 0.00008
2 6250000.00 0.00016
3 3125000.00 0.00032
4 1562500.00 0.00064
5 781250.00 0.00128
6 390625.00 0.00256
7 195312.50 0.00512
8 97656.25 0.01024
9 48828.13 0.02048
10 24414.06 0.04096
11 12207.03 0.08192
12 6103.52 0.16384
13 3051.76 0.32768
14 1525.88 0.65536
15 762.94 1.31072
16 381.47 2.62144
17 190.73 5.24288
18 95.37 10.48576
19 47.68 20.97152
20 23.84 41.94304
21 11.92 83.88608
22 5.96 167.77216
23 2.98 335.54432

The VHDL program shown in Listing 8.2 is a 24-bit counter that has three
outputs, a 25 MHz clock (c/k25), a 190 Hz clock (c/k190), and a 3 Hz clock (clk3). You
can modify this c/kdiv module to produce any output frequency given in Table 8.1. We
will use such a clock divider module in many of our top-level designs.

Listing 8.2 clkdiv.vhd

-- Example 8b: clock divider
library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC unsigned.all;

entity clkdiv is
port (
mclk : in STD LOGIC;
clr : in STD LOGIC;
clkl90 : out STD_LOGIC;
clk48 : out STD LOGIC
)i
end clkdiv;

46 Example 8

Listing 8.2 (cont) clkdiv.vhd
architecture clkdiv of clkdiv is
signal g:STD LOGIC VECTOR (23 downto 0);
begin
-- clock divider
process (mclk, clr)
begin
if clr = '1l' then
q <= X"000000";
elsif mclk'event and mclk = 'l' then
g <=4g + 1;
end if;
end process;

clk48 <= g(20); -- 48 Hz
clk190 <= g(18); -- 190 Hz
end clkdiv;

Note in Listing 8.2 that we define the internal signal ¢(23:0). The BDE symbol
generated by compiling Listing 8.2 is shown in Fig. 8.3. You can edit either Listing 8.2
or the block diagram shown in Fig. 8.3 to bring out only the clock frequencies you need
in a particular design. For example, the top-level design shown in Fig. 8.4 will cause the
eight LEDs on the FPGA board to count in binary at a rate of about three counts per
second. The corresponding top-level VHDL program is shown in Listing 8.3.

| U1

+1mclk clk3 [
*clr clk190 [

clk25 [~

clkdiv-
Figure 8.3 A clock divider

o\ iz e
melk > |mek cikal> RLSHR clk q(N—1:0)*;DId(T:O)
A L CI N btn3), 1., S
SRR P - counter - -

clkdiv

Figure 8.4 Counting in binary on the eight LEDs

Clocks and Counters 47

Listing 8.3 count8_top.v

-- Example 8c: count8 top
library IEEE;

use IEEE.std logic 1164.all;
library EXAMPLES;

entity count8 top is
port (
mclk : in std logic;
btn : in STD LOGIC VECTOR (3 downto 3);
1d : out std logic vector (7 downto 0)
)i

end count8 top;

architecture count8 top of count8 top is
component clkdiv
port (
clr : in std logic;
mclk : in std logic;
clk3 : out std logic
)i

end component;

component counter
generic (
N : INTEGER := 8
)
port (
clk : in std logic;
clr : in std logic;
g : out std logic vector (N-1 downto 0)
)

end component;
signal clk3 : std logic;

begin
Ul : clkdiv
port map (
clk3 => clk3, clr => btn(3), mclk => mclk);

U2 : counter
generic map (
N => 8)
port map (
clk => clk3, clr => btn(3), g => 1d(7 downto 0));

end count8 top;

Internally, a counter contains a collection of flip-flops. We saw in Fig. 1 of the
Introduction that each of the four slices in a CLB of a Spartan3E FPGA contains two
flip-flops. Such flip-flops are central to the operation of all synchronous sequential
circuits in which changes take place on the rising edge of a clock. The examples in the
second half of this book will involve sequential circuits beginning with an example of an
edge-triggered D flip-flop in Example 16.

48 Example 9

Example 9

7-Segment Decoder

In this section we will show how to design a 7-segment decoder using Karnaugh
maps and write a VHDL program to implement the resulting logic equations. We will
also solve the same problem using a VHDL case statement.

Prerequisite knowledge:
Karnaugh maps — Appendix D
case statement — Example 7
LEDs — Example 1

9.1 7-Segment Displays

Seven LEDs can be arranged in a pattern to form different digits as shown in Fig.
9.1. Digital watches use similar 7-segment displays using liquid crystals rather than
LEDs. The red digits on digital clocks are LEDs. Seven segment displays come in two
flavors: common anode and common cathode. A common anode 7-segment display has
all of the anodes tied together while a common cathode 7-segment display has all the
cathodes tied together as shown in Fig. 9.1.

* Common
? Anode
I
c d e f g
c d e f g
Common
Cathode

Figure 9.1 A 7-segment display contains seven light emitting diodes (LEDs)

The BASYS and Nexys2 boards have four common-anode 7-segment displays.
This means that all the anodes are tied together and connected through a pnp transistor to
+3.3V. A different FPGA output pin is connected through a 100€2 current-limiting
resistor to each of the cathodes, a — g, plus the decimal point. In the common-anode case,
an output 0 will turn on a segment and an output 1 will turn it off. The table shown in

Fig. 9.2 shows output cathode values for each

values from 0 — F.

Xx|abcdefg
0]0O0O0O0O0O0T1
1|11 001111
210010010
310000110 1
411001100
510100100 0
6/010000O00O0
710001111
8|1 000O0O0O0O
910000100
AJl0OOO1O0O00O
b|1 100000
c{01 1000012
d{1 000010
E{01 10000
F{|0o111000

7-Segment Decoder 49

segment a — g needed to display all hex

= off
on

a

L1

f b

g

I

GU c
I
d

Figure 9.2 Segment values required to display hex digits 0 — F

9.2 7-Segment Decoder: Logic Equations

The problem is to design a hex to 7-segment decoder, called hex7seg, that is

shown in Fig. 9.3. The input is a 4-bit hex
number, x(3:0), and the outputs are the 7-

segment values a — g given by the truth x[3:0] === hex7seg mmgp a_to_g[6:0]

table in Fig. 9.2. We can make a Karnaugh
map for each segment and then write logic
equations for the segments a — g. For
example, the K-map for the segment, e, is
shown in Figure 9.4.

Figure 9.3 A hex to 7-segment decoder

e=~x3&x0|~x3 &x2 & ~x1 | ~x2 & ~x1 & x0

x1 x0
x3 x2 00, 01, 11

10

.\

o[

o O
B

~x3 & x2 & ~x1 1
10 [i\
~x2 & ~x1 & x0 ! \

~x3 & x0

Figure 9.4 K-map for the segment e in the 7-segment decoder

50 Example 9

You can write the Karnaugh maps for the other six segments and then write the
VHDL program for the 7-segment decoder shown in Listing 9.1. A simulation of this
program is shown in Fig. 9.5. Note that the simulation agrees with the truth table in Fig.
9.2.

Listing 9.1 hex7seg_le.vhd
-- Example 9a: Hex to 7-segment decoder; a-g active low
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity hex7seg_le is
port (
X : in STD LOGIC VECTOR (3 downto 0) ;
a_to g : out STD LOGIC_ VECTOR(6 downto 0)
)i
end hex7seg le;

architecture hex7seg le of hex7seg le is
begin
a to g(6) <= (not x(3) and not x(2) and not x(1) and x(0))--a
or (not x(3) and x(2) and not x(1) and not x(0))
or (x(3) and x(2) and not x(1) and x(0))
or (x(3) and not x(2) and x(1) and x(0));
a_to g(5) <= (x(2) and x(1) and not x(0)) --b
or (x(3) and x(1) and x(0))
or (not x(3) and x(2) and not x(1) and x(0))
or (x(3) and x(2) and not x(1) and not x(0));
a_to g(4) <= (not x(3) and not x(2) and x(1) and not x(0))--c
or (x(3) and x(2) and x(1))
or (x(3) and x(2) and not x(0));
a_to g(3) <= (not x(3) and not x(2) and not x(1) and x(0))--d
or (not x(3) and x(2) and not x(1) and not x(0))
or (x(3) and not x(2) and x(1) and not x(0))
or (x(2) and x(1) and x(0));
a_to g(2) <= (not x(3) and x(0)) --e
or (not x(3) and x(2) and not x
or (not x(2) and not x(1) and x
a_to g(l) <= (not x(3) and not x(2) and x
or (not x(3) and not x(2) and x
or (not x(3) and x(1) and x(0))
or (x(3) and x(2) and not x(1) and x(0)) ;
a_to g(0) <= (not x(3) and not x(2) and not x(1)) --g
or (x(3) and x(2) and not x(1) and not x(0))
or (not x(3) and x(2) and x(1) and x(0));
end hex7seg le;

File Edit Search Wew ‘Waorkspace Design Simulation Waweform Tools Window Help <

= QO R QA W >

MHame Yalue | Strnulatar v B0 oW o500 2000, B0 . 300 (=
4 By E iBina Counterdd A1 42 43 &% 35 6 A7 48)8 oA 4B AC 3D JE J4F jo =
% ® a_to_g 130 |01 JLF 12 06 Yec a4 Yoo SOF Yoo 04 Yos f60 K51 Ja2 a0 has ot

*] | AR

Figure 9.5 Simulation of the VHDL program in Listing 9.1

7-Segment Decoder 51

9.3 7-Segment Decoder: case Statement

We can use a VHDL case statement to design the same 7-segment decoder that
we designed in Section 9.2 using Karnaugh maps. The VHDL program shown in Listing
9.2 is a hex-to-seven-segment decoder that converts a 4-bit input hex digit, 0 — F, to the
appropriate 7-segment codes, a — g. The case statement in Listing 9.2 directly
implements the truth table in Fig. 9.2. Recall that a typical line in the case statement,
such as

when "0011" => a to g <= "0000110"; --3

will assign the 7-bit binary value, 0000110, to the 7-bit array, a to g, when the input
hex value x(3:0) is equal to 3 (0011). In the array a to g the value a to g(6)
corresponds to segment a and the value a_to g(0) corresponds to segment g. . Note that
in VHDL a hex number is preceded by an X.

In the case statement the value following the when statement in each line
represents the value of the case parameter, in this case the 4-bit input x. The VHDL
program in Listing 9.2 shows the implementation of the 7-segment decoder using a case
statement.

Recall that all case statements should include a when others line as shown in
Listing 9.2. This is because all cases need to be covered and while it looks as if we
covered all cases in Listing 9.2, as mentioned previously VHDL actually defines nine
possible values for each bit of type STD LOGIC_VECTOR (see Example 1).

A simulation of Listing 9.2 will produce the same results as shown in Fig. 9.5. It
should be clear from this example and Example 7 that using the VHDL case statement is
often easier than solving for the logic equations using Karnaugh maps.

To test the 7-segment displays on the BASYS or Nexys-2 board create a new
project and add the files hex7seg.vhd from Listing 9.2 and the top-level design
hex7seg top.vhd given in Listing 9.3. Each of the four digits on the 7-segment display is
enabled by one of the active low signals an(3:0) and all digits share the same a_to_g(6:0)
signals. If an(3:0) = 0000 then all digits are enabled and display the same hex digit. This
is what we do in Fig. 9.6 and Listing 9.3. Making the output dp = 1 will cause the
decimal points to be off. You should be able to display all of the hex digits from 0 — F by
changing the four right-most switches.

m

SW(3:0) D00 atog@0r—1Da to_g(6:0)

hex7seg
VCC
DN 450y
J?;GND S

Figure 9.6 Top-level design for testing hex7seg

52

Example 9

Listing 9.2 hex7seg.vhd

-- Example 9b: Hex to 7-segment decoder; a-g active low
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity hex7seg is
port (
X : in STD LOGIC VECTOR (3 downto O0) ;
a_to g : out STD LOGIC VECTOR(6 downto 0)
)
end hex7seg;

architecture hex7seg of hex7segbis

begin
process (x)
begin
case X is
when X"0" => a to g <= "0000001"; --0
when X"1" => a_to_g <= "1001111"; --1
when X"2" => a to g <= "0010010"; --2
when X"3" => a to g <= "0000110"; --3
when X"4" => a to g <= "1001100"; --4
when X"5" => a to g <= "0100100"; --5
when X"6" => a to g <= "0100000"; --6
when X"7" => a to g <= "0001101"; --=7
when X"8" => a to g <= "0000000"; --8
when X"9" => a to g <= "0000100"; --9
when X"A" => a to g <= "0001000"; --A
when X"B" => a to g <= "1100000"; --b
when X"C" => a to g <= "0110001"; --C
when X"D" => a to g <= "1000010"; --d
when X"E" => a to g <= "0110000"; --E
when others => a to g <= "0111000"; --F
end case;

end process;
end hex7seg;

7-Segment Decoder

Listing 9.3 hex7seg_top.vhd

-- Example 9c: hex7seg top
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity hex7seg top is
port (
sw : in STD LOGIC VECTOR(3 downto 0) ;
a_to g : out STD LOGIC_VECTOR (6 downto 0);
an : out STD LOGIC VECTOR (3 downto 0);
dp : out STD LOGIC
)
end segitest;

architecture hex7seg_top of hex7seg top is
component hex7seg is
port (
x : in STD LOGIC_VECTOR (3 downto 0);
a _to g : out STD LOGIC VECTOR (6 downto 0)
)

end component;

begin
an <= "0000"; --all digits on
dp <= '1"'; --dp off

D4: hex7seg port map
(x => sw,
a to g =>a to g
)

end hex7seg_top;

53

54 Example 10

Example 10

7-Segment Displays:
x7seg and x7segb

In this example we will show how to display different hex values on the four 7-
segment displays.

Prerequisite knowledge:
Karnaugh maps — Appendix D
case statement — Example 7
LEDs — Example 1

10.1 Multiplexing 7-Segment Displays

We saw in Example 9 that the a to g(6:0) signals go to all of the 7-segment
displays and therefore in that example all of the digits displayed the same value. How
could we display a 4-digit number such as 1234 that contains different digits? To see
how we might do this, consider the BDE circuit shown in Fig. 10.1. Instead of enabling
all four digits at once by setting an(3:0) = "0000" as we did in Fig. 9.6 we connect
an(3:0) to the NOT of the four pushbuttons btn(3:0). Thus, a digit will only be enabled
when the corresponding pushbutton is being pressed.

The quad 4-to-1 multiplexer, mux44, from Listing 7.4 is used to display the 16-bit
number x(15:0) as a 4-digit hex value on the 7-segment displays. When you press btn(0)
if the control signal s(1:0) is 00 then x(3:0) becomes the input to the sex7seg module and
the value of x(3:0) will be displayed on digit 0. Similarly if you press btn(1) and the
control signal s(1:0) is 01 then x(7:4) becomes the input to the hex7seg module and the
value of x(7:4) will be displayed on digit 1. We can make the value of s(1:0) depend on
the value of htn(3:0) using the truth table in Fig. 10.2. From this truth table we can write
the following logic equations for s(1) and s(0).

s(l) <= btn(2) or btn(3);
s(0) <= btn(l) or btn(3);

The two OR gates in Fig. 10.1 will implement these logic equations for s(1:0).

The constant signal assignment for x(15:0) can be made by right clicking on the
BDE diagram and selecting VHDL->signal assignments. Then, wire the signal
assignment box to the x input and place the constant assignment x <= X"/234"; in the
signal assignment box.

The VHDL program created by compiling mux7seg.bde in Fig. 10.1 is equivalent
to the VHDL program shown in Listing 10.1. If you implement the design mux7seg.bde
shown in Fig. 10.1 and download the .bi¢ file to the FPGA board, then when you press

7-Segment Displays: x7seg and x7segb 55

buttons 0, 1, 2, and 3 the digits 4, 3, 2, and 1 will be displayed on digits 0, 1, 2, and 3
respectively. Try it.

bty
bty |"
bty |"
S qbtri3y” |:'

Figure 10.1 BDE circuit mux7seg.bde for multiplexing the four 7-segment displays

btn(3) btn(2) btn(1) btn(0) | s(1) s(0)
0 0 0 0 X X
0 0 0 1 0 O
0 0 1 0 0o 1
0 1 0 0 1 0
1 0 0 0 1 1

Figure 10.2 Truth table for generating s(1:0) in Fig. 10.1

Listing 10.1 mux7seg.vhd
-- Example 10a: mux7seg
library IEEE;
use IEEE.std logic 1164.all;

entity mux7seg is
port (
btn : in STD LOGIC VECTOR (3 downto 0);
a_to g : out STD LOGIC VECTOR (6 downto O0) ;
an : out STD LOGIC VECTOR(3 downto 0)
)i

end mux7seg;

56 Example 10

Listing 10.1 (cont.) mux7seg.vhd

architecture mux7seg of mux7seg is

component hex7seg
port (
X : in STD LOGIC VECTOR (3 downto O0) ;
a_to g : out STD LOGIC_ VECTOR(6 downto 0)
)
end component;
component mux44
port (
s : in STD LOGIC VECTOR (1l downto 0) ;
X : in STD LOGIC_VECTOR (15 downto 0) ;
z : out STD LOGIC VECTOR (3 downto 0)
)

end component;

signal digit : STD LOGIC VECTOR (3 downto 0);
signal s : STD LOGIC VECTOR (1 downto 0);
signal x : STD LOGIC VECTOR (15 downto O0);

begin
X <= X"1234";

Ul : hex7seg
port map (
a_to g => a to g, x => digit);

U2 : mux44
port map (
S => 8, X => X, z => digit);

s(0) <= btn(3) or btn(l);
s(1l) <= btn(3) or btn(2);
an(l) <= mnot(btn(1l));
an(0) <= not(btn(0));
an(2) <= not(btn(2));
an(3) <= not (btn(3));

end mux7seg;

10.2 7-Segment Displays: x7seg

We saw in Section 10.1 that to display a 16-bit hex value on the four 7-segment
displays we must multiplex the four hex digits. You can only make it appear that all four
digits are on by multiplexing them fast enough (greater than 30 times per second) so that
your eyes retain the values. This is the same way that your TV works where only a
single picture element (pixel) is on at any one time, but the entire screen is refreshed 30
times per second so that you perceive the entire image. To do this the value of 5(1:0) in
Fig. 10.1 must count from 0 to 3 continually at this fast rate. At the same time the value
of the outputs an(3:0) must be synchronized with s(1:0) so as to enable the proper digit at
the proper time. A circuit for doing this is shown in Fig. 10.3. The outputs an(3:0) will
satisfy the truth table in Fig. 10.4. Note that each output an(i) is just the maxterm M(7) of

q(1:0).

7-Segment Displays: x7seg and x7segb 57

Figure 10.3 BDE circuit x7seg.bde for displaying x(15:0) on the four 7-segment displays

q(1)q(0) | an(3) an(2) an(1) an(0) |

0 O 1 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 1 1 1

Figure 10.4 Truth table for generating an(3:0) in Fig. 10.3

A simulation of x7seg.bde is shown in Fig. 10.5. Note how the an(3:0) output
selects one digit at a time to display the value 1234 on the 7-segment displays. When
x7seg.bde is compiled it creates a VHDL program that is equivalent to Listing 10.2. The

to.p'leVel deSign Shown in File Edit Search Wiew ‘Workspace Design Simulation Waveform Tools Window Help R
Fig. 10.6 can be used to test | =z g Aol &S Qe W »
the x7seg module on the f,. Value [Stimulator |+ 20 40 . e @ om0 20 . Mo, w0 ne |
FPGA board. The VHDL > ol Clack =l
program corresponding to this | =er Formia i |
top-level design is given in |*=* Sl
Listing 10.3. Note that the }=.=.3" ., D T (NS, D D (D, T
; 7 - I T D D T . ¢
x7seg module requires a 190 ng 1 lz |3 = lz |3 =i
Hz clock generated by the ”n; T T e e
clock divider module clkdiv S B O T G I
from Example 8. .
= an[2) | | | |
= anfl) _| | [| |_
= anill]] | | LT
7 a5 to_g L CEE G . R A H
<| | RIS

Figure 10.5 Simulation of the x7segb.bde circuit in Fig. 10.3

58 Example 10

Listing 10.2 x7seg.vhd

-- Example 10b: x7seg
library IEEE;
use IEEE.std logic 1164.all;

entity x7seg is
port (
cclk : in STD_LOGIC;
clr : in STD LOGIC;
x : in STD LOGIC VECTOR (15 downto 0);
a_to g : out STD LOGIC VECTOR (6 downto O0) ;
an : out STD LOGIC VECTOR (3 downto 0)
)
end x7seg;

architecture x7seg of x7seg is
component counter
generic (
N : INTEGER := 8
)
port (
clk : in STD LOGIC;
clr : in STD LOGIC;
g : out STD LOGIC VECTOR (N-1 downto 0)
)
end component;

component hex7seg
port (
X : in STD LOGIC VECTOR (3 downto 0) ;
a_to g : out STD LOGIC_ VECTOR (6 downto 0)
)

end component;

component mux44
port (
] in STD LOGIC_VECTOR (1l downto 0) ;
X : in STD LOGIC VECTOR (15 downto O0) ;
Z out STD LOGIC_VECTOR (3 downto 0)
)

end component;

signal ng0 : STD LOGIC;

signal ngl : STD LOGIC;

signal digit : STD_LOGIC_VECTOR (3 downto 0) ;
signal g : STD LOGIC VECTOR (1 downto 0);

begin
Ul : hex7seg
port map (
a to g => a to g,
x => digit
)

ngl <= not(g(l));
ng0 <= not (g(0));

7-Segment Displays: x7seg and x7segb

Listing 10.2 (cont.) x7seg.vhd

U2 : mux44
port map (
s(0) => g(0),
s(1) => g(1),

X => X,
z => digit
) i
U3 : counter
port map (
clk => cclk,
clr => clr,
g => g(1 downto 0)
)i

(0) <= g(0) or g(1);
an(l) <= ng0 or g(l);

(2) <= g(0) or ngl;

(3) <= ng0 or ngl;

end x7seg;

-------] kC——m ck T ..‘- cIr an-a:tl-"_D‘aI"IlIBZ'Dj:

Figure 10.6 Top-level design for testing x7seg

Listing 10.3 x7seg_top.vhd

-- Example 10c: x7seg top
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity x7seg top is
port (
mclk : in STD LOGIC;
btn : in STD LOGIC VECTOR (3 downto 3);
a_to g : out STD LOGIC VECTOR (6 downto 0) ;
an : out STD LOGIC VECTOR(3 downto 0);
dp : out STD LOGIC
)
end x7seg top;

59

60 Example 10

Listing 10.3 (cont.) x7seg_top.vhd

architecture x7seg top of x7seg top is

component x7seg is
port (
cclk : in STD_LOGIC;
clr : in STD LOGIC;
x : in STD LOGIC VECTOR (15 downto 0);
a to g : out STD LOGIC VECTOR (6 downto 0);
an : out STD LOGIC VECTOR (3 downto 0)

)
end component;
component clkdiv
port (
clr : in STD LOGIC;
mclk : in STD LOGIC;
clk1l90 : out STD LOGIC
)

end component;

signal x: STD_LOGIC_VECTOR(lS downto 0) ;
signal clk190: STD_LOGIC;

begin
X <= X"1234"; -- test display value

X1l: clkdiv port map
(clr=>btn(3), mclk=>mclk, clkl1l90=>clk190) ;

X2: x7seg port map
(x=>x, cclk=>clk190, clr=>btn(3), a to g=>a to g,
an=>an) ;

dp <= '1"';

end x7seg top;

10.3 7-Segment Displays: x7segb

When implementing the circuit for x7seg in Fig. 10.3 we must add separate
VHDL files to the project for the modules counter, hex7seg and mux44. Alternatively,
we can include separate processes within a single VHDL file. A variation of x7seg,
called x7segb, that displays leading zeros as blanks is shown in Listing 10.4. This is
done by writing logic equations for aen(3:0) that depend on the values of x(15:0). For
example, aen(3) will be 1 (and thus digit 3 will not be blank) if any one of the top four
bits of x(15:0) is 1. Similarly, aen(2) will be 1 if any one of the top eight bits of x(15:0)
is 1, and aen(1) will be 1 if any one of the top twelve bits of x(15:0) is 1. Note that
aen(0) is always 1 so that digit 1 will always be displayed even if it is zero.

To test the module x7segb you can run the top-level design shown in Listing 10.4
that will display the value of x on the 7-segment displays where x is defined by the
following statement:

X <= sw & btn(2 downto 0) & "01010"; -- digit 0 = A

7-Segment Displays: x7seg and x7segb 61

In this case we form the 16-bit value of x by concatenating the eight switches, the three
right-most pushbuttons, and the five bits 01010. Note that if all switches are off an A
will be displayed on digit 0 with three leading blanks. Turning on the switches and
pushing the three right-most pushbuttons will display various hex numbers — always with
leading blanks.

Listing 10.4 x7segb.vhd

-- Example 10d: x7segb - Display 7-seg with leading blanks
-- input cclk should be 190 Hz

library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC UNSIGNED.all;

entity x7segb is
port (
X : in STD LOGIC VECTOR (15 downto 0) ;
clk : in STD LOGIC;
clr : in STD LOGIC;
a to g : out STD LOGIC VECTOR (6 downto 0);
an : out STD LOGIC VECTOR (3 downto 0);
dp : out STD LOGIC
)
end x7segb;

architecture x7segb of x7segb is

signal s: STD LOGIC_VECTOR(1 downto 0);
signal digit: STD LOGIC_VECTOR(3 downto 0) ;
signal aen: STD LOGIC_VECTOR(3 downto 0);
signal clkdiv: STD LOGIC VECTOR (20 downto 0) ;

begin

s <= clkdiv (20 downto 19);

dp <= '1"';

-- set aen(3 downto 0) for leading blanks

aen(3) <= x(15) or x(14) or x(13) or x(12)

aen(2) <= x(15) or x(14) or x(13) or x(12)

or x(11) or x(10) or x(9) or x(8);

2)
8)

I

aen(l) <= x(15) or x(14) or x(13) or x(1
or x(11) or x(10) or x(9) or x(
or x(7) or x(6) or x(5) or x(4);

aen(0) <= '1'; -- digit 0 always on

-- Quad 4-to-1 MUX: mux44
process (s, x)
begin
case s is
when "00" => digit <= x(3 downto 0);
when "01" => digit <= x(7 downto 4);
when "10" => digit <= x(11 downto 8);
when others => digit <= x(15 downto 12);
end case;
end process;

62 Example 10

Listing 10.4 (cont.) x7segb.vhd

--7-segment decoder: hex7seg
process (digit)
begin
case digit is
when X"0" => a to g <= "0000001"; --0
when X"1" => a to g <= "1001111"; --1
when X"2" => a to g <= "0010010"; --2
when X"3" => a to g <= "0000110"; --3
when X"4" => a to g <= "1001100"; --4
when X"5" => a to g <= "0100100"; --5
when X"6" => a to g <= "0100000"; --6
when X"7" => a to g <= "0001101"; --7
when X"8" => a to g <= "0000000"; --8
when X"9" => a to g <= "0000100"; --9
when X"A" => a to g <= "0001000"; --A
when X"B" => a to g <= "1100000"; --b
when X"C" => a to g <= "0110001"; --C
when X"D" => a to g <= "1000010"; --d
when X"E" => a to g <= "0110000"; --E
when others => a to g <= "0111000"; --F
end case;
end process;
-- Digit select: ancode
process (s, aen)
begin
an <= "1111";
if aen(conv_integer(s)) = 'l' then
an(conv_integer(s)) <= '0';
end if;
end process;
-- Clock divider
process (clk, clr)
begin
if clr = '1' then
clkdiv <= (others => '0');
elsif clk’event and clk = 'l' then
clkdiv <= clkdiv + 1;
end if;
end process;
end x7segb;

7-Segment Displays: x7seg and x7segb

Listing 10.5 x7segb_top.vhd

-- Example 10e: x7seg top
library IEEE;
use IEEE.STD LOGIC 1164.all;

entity x7segb top is
port (
clk : in STD LOGIC;
btn : in STD LOGIC_VECTOR (3 downto 0) ;
sw : in STD LOGIC VECTOR (7 downto O0) ;
a_to g : out STD LOGIC VECTOR (6 downto O0) ;
an : out STD LOGIC VECTOR(3 downto 0);
dp : out STD LOGIC
)
end x7segb top;

architecture x7segb top of x7segb top is
component x7segb is
port (
x : in STD LOGIC_ VECTOR (15 downto 0);
clk : in STD LOGIC;
clr : in STD LOGIC;
a_to g : out STD LOGIC VECTOR (6 downto O0) ;
an : out STD LOGIC VECTOR(3 downto 0);
dp : out STD LOGIC
)
end component;
signal x: STD LOGIC_VECTOR(15 downto 0) ;
begin
-- concatenate switches and 3 buttons
X <= sw & btn(2 downto 0) & "01010"; -- digit 0 = A

X2: x7segb port map
(x=>x,
clk=>clk,
clr=>btn(3),
a _to _g=>a to_g,
an=>an,
dp=>dp
)

end x7segb top;

63

64 Example 11

Example 11

2's Complement 4-Bit Saturator

In this example we will design a circuit that converts a 6-bit signed number to a 4-
bit output that gets saturated at -8 and +7.

Prerequisite knowledge:
Basic Gates — Appendix C
Equality Detector — Example 6
Quad 2-to-1 Multiplexer — Example 6
7-Segment Displays — Example 10

11.1 Creating the Design sat4bit.bde

Figure 11.1 shows a circuit called sat4bit.bde that was described in the November
2001 issue of NASA Tech Briefs. The circuit will take a 6-bit two’s complement number
with a signed value between —32 and +31 and convert it to a 4-bit two’s complement
number with a signed value between —8 and +7. Negative input values less than —8 will
be saturated at —8. Positive input values greater than +7 will be saturated at +7.

Note that the two XNOR gates and the AND gate form an equality detector whose
output s is 1 when x(3), x(4), and x(5) are all equal (see Example 4). This will be the case
when the 6-bit input number x(5:0) is between -8 and +7. In this case output y(3:0) of the
quad 2-to-1 MUX will be connected to the input x(3:0). If the top three bits of x(5:0) are
not equal and x(5) is 1 then the input value will be less than -8 and the output y(3:0) of
the quad 2-to-1 MUX will be saturated at -8. On the other hand if the top three bits of
x(5:0) are not equal and x(5) is 0 then the input value will be greater than +7 and the
output y(3:0) of the quad 2-to-1 MUX will be saturated at +7.

Figure 11.1 Circuit diagram for sat4bit.bde

2's Complement 4-Bit Saturator 65

Listing 11.1 sat4bit.vhd
-- Example 1lla: sat4dbit
library IEEE;
use IEEE.std logic_ 1164.all;

entity sat4bit is
port (
x : in STD LOGIC_VECTOR (5 downto 0);
y : out STD LOGIC VECTOR(3 downto 0)
)
end sat4bit;

architecture sat4bit of sat4bit is
component mux24

port (
a : in STD_LOGIC VECTOR (3 downto 0) ;
b : in STD LOGIC VECTOR (3 downto 0) ;
s : in STD LOGIC;
y : out STD LOGIC VECTOR (3 downto 0)

)
end component;
signal cO : STD_ LOGIC;
signal cl : STD_LOGIC;
signal s : STD LOGIC;
signal xi : STD LOGIC;

begin
Ul : mux24
port map (a(0) => xi, a(l) => xi, a(2) => xi, a(3) => x(5),
b(0) => x(0), b(l) => x(1), b(2) => x(2),
b(3) => x(3), s => 8, v =>Y);

cl <= not(x(4
x1i <= not(x(5
c0 <= not(x(5
s <= c0 and c

FJ\,V,V
"
0
R
X
S

7

end sat4bit;

A top-level design that can be used to test sat4bit is shown in Fig. 11.2. The
module x7seghl1 is a modification of Listing 10.4 that will display only values between
-8 and +7 on the 7-segment display. Listing 11.2 shows the VHDL program for the
module x7segbl1. The input to x7segbll is the 4-bit output y(3:0) from sat4bit. Note
that only the two rightmost 7-segment display are enabled. The two leftmost displays are
always blank. The hex7seg process in Listing 11.2 has been modified to display the
magnitude of the signed value of y(3:0) — 0 to 8. The preceding 7-segment display will
either be blank or display a minus sign. The quad 4-to-1 MUX and the new 2-to-1 MUX
are used to display the minus sign when aen(1) is enabled if y(3) is 1; i.e., if y is negative.

66

Example 11

ek 3.v_genpe=—D3 1o (E:0)
e agoypr—Dran(3:0) - - -

v @ D) sppr—dp- - - -

Figure 11.2 Top-level design sat4bit_top.bde for testing sat4bit

Listing 11.2 x7segb11.vhd

-- Example 11b: x7segbll - test sat4bit
library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC UNSIGNED.all;

entity x7segbll is
port (
y : in STD LOGIC_VECTOR (3 downto 0);
cclk : in STD LOGIC;
clr : in STD LOGIC;
a_to g : out STD LOGIC VECTOR(6 downto O0);
an : out STD LOGIC_VECTOR(3 downto 0);
dp : out STD LOGIC
)i
end x7segbll;

architecture x7segbll of x7segbll is

signal msel: STD LOGIC;

signal a_g0: STD_LOGIC_VECTOR (6 downto 0);
signal a gl: STD LOGIC VECTOR (6 downto O0);
signal s: STD LOGIC VECTOR(1 downto 0);
signal digit: STD _LOGIC_VECTOR(3 downto 0);
signal aen: STD LOGIC_VECTOR(3 downto 0);

begin

-- Quad 4-to-1 MUX: mux44
process (s)

begin
case s is
when "00" => msel <= '0';
when "01" => msel <= 'l'; --display minus sign
when "10" => msel <= '0';
when others => msel <= '0';

end case;
end process;

2's Complement 4-Bit Saturator 67

Listing 11.2 (cont.) x7segb11.vhd

--7-segment decoder: hex7seg
process (digit)

begin
case digit is
when X"0" => a g0 <= "0000001"; --0
when X"1" => a g0 <= "1001111"; --1
when X"2" => a g0 <= "0010010"; --2
when X"3" => a g0 <= "0000110"; --3
when X"4" => a g0 <= "1001100"; --4
when X"5" => a g0 <= "0100100"; --5
when X"6" => a g0 <= "0100000"; --6
when X"7" => a g0 <= "0001101"; --7
when X"8" => a g0 <= "0000000"; -- -8
when X"9" => a g0 <= "0000100"; -- =7
when X"A" => a g0 <= "0001000"; -- -6
when X"B" => a g0 <= "1100000"; -- -5
when X"C" => a g0 <= "0110001"; -- -4
when X"D" => a g0 <= "1000010"; -- -3
when X"E" => a g0 <= "0110000"; -- -2
when X"F" => a g0 <= "0110000"; -- -1
when others => a_g0 <= "0000001"; --0
end case;

end process;

-- 2-to-1 MUX
process (msel)
begin
if msel = '1l' then
a to g <= a_gil;
else
a to g <= a go0;
end if;
end process;

-- Digit select: ancode
process (s, aen)

begin
an <= "1111";
if aen(conv_integer(s)) = 'l' then
an(conv_integer(s)) <= '0';
end if;

end process;

-- 2-bit counter
process (cclk, clr)

begin
if clr = '1l' then
s <= "00";
elsif cclk'event and cclk = 'l' then
S <= s + "01";
end if;

end process;

end x7segbll;

68 Example 11

The VHDL program corresponding to the top-level design in Fig. 11.2 is given in
Listing 11.3. Download this top-level design to the FPGA board and observe the output
on the 7-segment display for different 6-bit switch inputs.

Listing 11.3 sat4bit_top.vhd
-- Example 1llc: sat4bit top
library IEEE;
use IEEE.std logic 1164.all;

entity sat4bit top is
port (
mclk : in STD LOGIC;
btn : in STD LOGIC_VECTOR (3 downto 3);
sw : in STD LOGIC VECTOR (5 downto O0) ;
dp : out STD LOGIC;
a_to g : out STD LOGIC VECTOR(6 downto O0);
an : out STD LOGIC_VECTOR(3 downto 0);
1d : out STD LOGIC_ VECTOR (5 downto 0)
)i
end sat4bit top;

architecture sat4bit top of sat4bit top is
component clkdiv
port (
clr : in STD LOGIC;
mclk : in STD LOGIC;
clk1l90 : out STD LOGIC
)i

end component;

component sat4bit
port (
x : in STD LOGIC_VECTOR (5 downto 0);
y : out STD LOGIC VECTOR (3 downto 0)
)

end component;

component x7segbll

port (
cclk : in STD_LOGIC;
clr : in STD LOGIC;
y : in STD LOGIC VECTOR (3 downto 0) ;
a_to g : out STD LOGIC VECTOR (6 downto O0) ;
an : out STD LOGIC VECTOR(3 downto 0);
dp : out STD LOGIC

)

end component;

signal clk190 : STD_ LOGIC;
signal y : STD LOGIC VECTOR (3 downto 0);

Listing 11.3 (cont.) sat4bit_top.vhd

2's Complement 4-Bit Saturator

begin
Ul : sat4dbit
port map (
X => SWw,
) Yy =>Y

U2 : x7segbll

port map (
a to g => a_to g,
an => an,
cclk => clk190,
clr => btn(3),
dp => dp,

) Yy =>Y

U3 : clkdiv
port map (
clk1l90 => clk190,
clr => btn(3),
mclk => mclk
) i

1d <= sw;

end sat4bit top;

69

70 Example 12

Example 12

Full Adder

In this example we will design a full adder circuit.

Prerequisite knowledge:
Basic Gates — Appendix C
Karnaugh Maps — Appendix D
7-Segment Displays — Example 10

12.1 Half Adder

The truth table for a half adder is shown in Fig. 12.1. In this table bit a is added
to bit b to produce the sum bit s and the carry bit c. Note that if you add 1 to 1 you get 2,
which in binary is 10 or 0 with a carry bit. The BDE logic diagram, halfadd.bde, for a
half adder is also shown in Fig. 12.1. Note that the sum s is just the exclusive-or of @ and
b and the carry c is just a & b. The VHDL program corresponding to the circuit in Fig.
12.1 is shown in Listing 12.1. A simulation of halfadd.bde is shown in Fig. 12.2.

Figure 12.1 Truth table and logic diagram halfadd.bde for a half-adder

Listing 12.1 halfadd.vhd

-- Example 12a: half adder
library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC unsigned.all;

entity halfadd is

port (
: in STD LOGIC;
: in STD LOGIC;
: out STD LOGIC;
: out STD LOGIC

n Qoo

) i
end halfadd;

Listing 12.1 (cont.) halfadd.vhd

Full Adder

71

begin
s

end halfadd;

<= a xor b;
c <= a and Db;

architecture halfadd of halfadd is

File Edit Search YWiew ‘Workspace Design Simuolation aweForm

Tools ‘Window Help

= - o QS g &
M arme alue | Stirmulator I R s R R R

B 3 Clock, 4|—|__

= h Clock, | | | |

iy N e N

*c [1

Figure 12.2 Simulation of the half-adder in Fig. 12.1

12.2 Full Adder

When adding binary numbers we need to consider the carry from one bit to the
next. Thus, at any bit position we will be adding three bits: a;, b; and the carry-in ¢; from
the addition of the two bits to the right of the current bit position. The sum of these three
bits will produce a sum bit, s;, and a carry-out, ¢;+;, which will

be the carry-in to the next bit position to the left. This is called a
full adder and its truth table is shown in Fig. 12.3. The results of
the first seven rows in this truth table can be inferred from the
truth table for the half adder given in Fig. 12.1. In all of these
rows only two 1's are ever added together. The last row in Fig.
12.3 adds three 1's. The result is 3, which in binary is 11, or 1

plus a carry.

From the truth table
products expression for s; as

R R R R

in Fig. 12.3 we can write a sum of

R R R R

(12.1)

C, a bi| s Cyy
0 O 0 0 0
0 O 1 1 0
0O 1 O 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
Figure 12.3

Truth table for a full adder

We can use the distributive law to factor out ~c; from the first two product terms and c;
from the last two product terms in Eq. (12.1) to obtain

Si

~ci & (~ai & Dbi | ai & ~bji)

| c; & (~a3 & ~bg | as; & bjg)

(12.2)

72 Example 12

which can be written in terms of XOR and XNOR operations as
s{ = ~ci & (a; * bi) | ci & ~(ay © bj) (12.3)

which further reduces to

A

s{ = Ccji (a; * bj) (12.4)

Fig. 12.4 shows the K-map for ¢;+; from the truth table in Fig. 12.3. The map
shown in Fig. 12.4a leads to the reduced form for c;+; given by

Cisy1 = ai &by | cif & by | c1 & aj (12.5)

While this is the reduced form, a more convenient form can be written from Fig. 12.4b as
follows:

Cisy1 = ai &by | cif & ~a1 & by | ¢ci & a3 & ~bj
=aj &bi | c1 & (~aj & bjy | a3 & ~bji)
=aj &bi | ¢ & (ai © bi) (12.6)
bj
aibj aibi
c; 00 01 11 10 c,
0 (1) 0
1 [1 1 1] :ICi 1] Cj
L 1
aj

(a) (b)
Figure 12.4 K-maps for cj+1 for full adder in Fig. 6.2

From Eqgs. (12.4) and (12.6) we can draw the logic diagram for a full adder as shown in
Fig. 12.5. Comparing this diagram to that for a half adder in Fig. 12.1 it is clear that a
full adder can be made from two half adders plus an OR gate as shown in Fig. 12.6.

Figure 12.5 Logic diagram for a full adder

Full Adder 73

aj— S half-adder C_Y\
C .
bi—] c I_./_ i+1

half-adder

Figure 12.6 A full adder can be made from two half adders plus an OR gate

From Fig. 12.6 we can create a BDE design, fulladd.bde, as shown in Fig. 12.7.
The VHDL program resulting from compiling this design is equivalent to that shown in
Listing 12.2. A simulation of this full adder is shown in Fig. 12.8. Note that the outputs
agree with the truth table in Fig. 12.3.

L S
al—s op o
b — b S%Ljfz

~ haffadd

cinlo——m—— Hb] A — Ds

Figure 12.7 Block diagram fulladd.bde for a full adder

Listing 12.2 fulladd.v
-- Example 12b: fulladd
library IEEE;
use IEEE.std logic 1164.all;

entity fulladd is
port (
a : in STD LOGIC;
b : in STD LOGIC;
cin : in STD LOGIC;
cout : out STD LOGIC;
s : out STD LOGIC
)
end fulladd;

architecture fulladd of fulladd is
component halfadd
port (
a : in STD LOGIC;
b : in STD LOGIC;
c : out STD LOGIC;
s : out STD_LOGIC
) i

end component;

74

Example 12

Listing 12.2 (cont.) fulladd.v

signal cl : STD_LOGIC;
signal c2 : STD_LOGIC;
signal sl : STD LOGIC;

begin
Ul : halfadd
port map (
a=>a, b=>Db, ¢ =>cl, s =>81);

U2 : halfadd
port map (
a =>s8l, b =>cin, ¢ => c2, 8 => 8);

cout <= c2 or cl;

end fulladd;

File Edit Search Mew ‘Workspace Design Simulation Waveform Tools Window Help “
=y= F QL & QE e W >

K E=] Walue | Stirmulatar e e 2 30 0 40 0 80 0 BD o VDo &N L=
B cin 1 Clock. | L_____
T e e e N e—
= b 1 iClock | | | |
wa N e B e B
el 0 [[

Figure 12.8 Simulation of the full adder in Fig. 12.7 and Listing 12.2

4-Bit Adder 75

Example 13

4-Bit Adder

In this example we will design a 4-bit adder.

Prerequisite knowledge:
Basic Gates — Appendix C
Karnaugh Maps — Appendix D
Full Adder — Example 12

13.1 4-Bit Adder

Four of the full adders in Fig. 12.7 can be combined to form a 4-bit adder as
shown in Fig. 13.1. Note that the full adder for the least significant bit will have a carry-
in of zero while the remaining bits get their carry-in from the carry-out of the previous
bit. The final carry-out, is the cout for the 4-bit addition. The VHDL program
corresponding to the 4-bit adder in Fig. 13.1 is given in Listing 13.1.

___________ e

aan D b2y

.................. fulladd - - - - - - - - oo
Figure 13.1 Block diagram adder4.bde for a 4-bit adder

76 Example 13

Listing 13.1 adder4.vhd

-- Example 13a: adder4
library IEEE;
use IEEE.std logic 1164.all;

entity adder4 is
port (
cin : in STD LOGIC;
a : in STD_LOGIC VECTOR (3 downto 0) ;
b : in STD LOGIC VECTOR (3 downto 0) ;
cout : out STD LOGIC;
s : out STD LOGIC VECTOR(3 downto 0)
)
end adder4;

architecture adder4 of adder4 is
component fulladd
port (
a : in STD LOGIC;
b : in STD LOGIC;
cin : in STD LOGIC;
cout : out STD LOGIC;
s : out STD LOGIC
)i

end component;

signal cl : STD_LOGIC;
signal c2 : STD_LOGIC;
signal c3 : STD_ LOGIC;

begin
Ul : fulladd
port map (
a => af(2), b => b(2), cin => ¢c2, cout => c3,
s => s(2));

U2 : fulladd

port map (
a => a(3), b => b(3), cin => c¢3, cout => cout,
s => s(3));

U3 : fulladd

port map (
a => a(l), b =>Db(1l), cin => cl, cout => c2,
S => S(l));

U4 : fulladd

port map (
a => a(0), b => b(0), cin => cin, cout => c1,
s => s(0));

end adder4;

4-Bit Adder 77

A simulation of the 4-bit adder in Fig. 13.1 and Listing 13.1 is shown in Fig. 13.2.
The value of a is incremented from 0 to F and is added to the hex value B. The sum s is
always equal to a + b. Note that the carry flag, cout, is equal to 1 when the correct
unsigned answer exceeds 15 (or F).

We can test the adder4 module from Fig. 13.1 and Listing 13.1 on the FPGA
board by combining it with the x7seghb module from Listing 10.4 in Example 10 and the
clkdiv module from Listing 8.2 from Example 8 to produce the top-level design shown in
Listing 13.2. The 4-bit number sw(7:4) will be displayed on the first (left-most) 7-
segment display. The 4-bit number sw(3:0) will be displayed on the second 7-segment
display. These two numbers will be added and the 4-bit sum will be displayed on the
fourth (right-most) 7-segment display and the carry bit will be displayed on the third 7-
segment display. Try it.

File Edit Search Wiew ‘Workspace Design Simulation Waweform Tools Window Help «
=M hQL | QA& N
M arne "alue | Stimulatar L L O < L <1 S B, B B ”5|
€5 a BrayCou T N_JE_JE_J6 6 & N e & JE & e e & 0 0 e -
+ b <= 164E B
B cin <=0
el AN Y S
o2 | [L] [L]
w3 [e
Rl
= cout |

« | PI«IOI»H

Figure 13.2 Simulation of the 4-bit adder in Fig. 13.1 and Listing 13.1

Listing 13.2 adder4_top.vhd

-- Example 13b: adder4 top
library IEEE;

use IEEE.STD LOGIC 1164.all;

entity adder4 top is
port (
mclk : in STD LOGIC;
btn : in STD LOGIC VECTOR (3 downto 3);
sw : in STD LOGIC VECTOR(7 downto 0) ;
a_to g : out STD LOGIC_VECTOR(6 downto 0);
an : out STD LOGIC VECTOR (3 downto 0);
dp : out STD LOGIC;
1d : out STD LOGIC VECTOR (7 downto 0)
)i
end adder4 top;

78

Example 13

Listing 13.2 (cont.) adder4_top.vhd

architecture adder4 top of adder4 top is
component adder4 is
port (
cin : in STD LOGIC;
a : in STD LOGIC_VECTOR(3 downto 0);
b : in STD LOGIC_VECTOR (3 downto 0);
cout : out STD LOGIC;
s : out STD LOGIC VECTOR (3 downto 0)
)i

end component;

component x7segb is

port (
x : in STD LOGIC VECTOR (15 downto 0);
clk : in STD LOGIC;
clr : in STD LOGIC;
a_to g : out STD LOGIC VECTOR(6 downto O0);
an : out STD LOGIC_VECTOR(3 downto 0);
dp : out STD LOGIC

)

end component;

component clkdiv2 is
port (
mclk : in STD LOGIC;
clr : in STD LOGIC;
clk1l90 : out STD LOGIC
)

end component;

signal clk190, clr, c4, cin: STD LOGIC;
signal x: STD LOGIC VECTOR (15 downto O0) ;
signal sum: STD LOGIC_VECTOR(3 downto 0);

begin
cin <= '0';
X <= sw & "000" & c4 & sum;
clr <= btn(3);
1d <= sw;

Ul: adder4 port map
(cin => cin, a => sw(7 downto 4), b => sw(3 downto 0),
cout => c4, s => sum);

U2: x7segb port map
(x => x, clk => clk190, clr => clr, a _to g => a _to_g,

an => an, dp => dp);

U3: clkdiv2 port map
(mclk => mclk, clr => clr, clkl190 => c1k190);

end adder4 top;

N-Bit Adder 79
Example 14
N-Bit Adder

In this example we will design a N-bit adder.

Prerequisite knowledge:
4-Bit Adder — Example 13

14.1 4-Bit Adder: Behavioral Statements

It would be convenient to be able to make a 4-bit adder (or any size adder) by just
using a + sign in a VHDL statement. In fact, we can! When you write a + b in a VHDL
program the compiler will produce a full adder of the type we designed in Example 12.
The only question is how to create the output carry bit. The trick is to add a leading 0 to
a and b and then make a 5-bit temporary variable to hold the sum as shown in Listing
14.1. The most-significant bit of this 5-bit sum will be the carry flag.

A simulation of this program is shown in Fig. 14.1. Compare this with Fig. 13.2.

Listing 14.1 adder4b.vhd

-- Example 14a: 4-bit behavioral adder
library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC unsigned.all;

entity adder4b is
port (
a : in STD LOGIC_ VECTOR (3 downto O0) ;
b : in STD LOGIC_VECTOR (3 downto 0) ;
s : out STD LOGIC_VECTOR(3 downto 0);
cf : out STD LOGIC
)i
end adder4b;

architecture adder4b of adder4b is
begin
process (a, b)
variable temp: STD_LOGIC_VECTOR (4 downto 0);
begin
temp := ('0' & a) + ('0' & b);
S <= temp(3 downto 0) ;
cf <= temp(4);
S <= a + b;
end process;

end adder4b;

80 Example 14

File Edit Search Wiew ‘“Workspace Design Simulation wWaveform Tools window Help “«

= = Q& & & e e o | ot | 4

Mame “Yalue | Stimulatar ' B [[= R oD 250 o300 « 380 nz

#e g BinapCou.) 1 M2 3 J& W8 5 47 e) XA WB fc U0 JE F e e

+ B h <=164B E

#1R* temp 0B e o) (5 A7 e e Jn e Joc oo)
40 s
= cf [

l | >|«|°|»H

Figure 14.1 Simulation of the VHDL program in Listing 14.1

14.2 N - Bit Adder: Behavioral Statements

Listing 14.2 shows an N-bit adder that uses a gemeric statement. This is a
convenient adder to use when you don’t need the carry flag. An example of using this as
an 8-bit adder is shown in the simulation in Fig. 14.2. Note that when the sum exceeds
FF it simply wraps around and the carry flag is lost.

Listing 14.2 adder.vhd

-- Example 14b: N-bit adder
library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC unsigned.all;

entity adder is
generic (N:integer := 8);
port (
a : in STD LOGIC VECTOR(N-1 downto 0) ;
b : in STD LOGIC VECTOR (N-1 downto 0);
y : out STD LOGIC VECTOR(N-1 downto 0)
)
end adder;

architecture adder of adder is
begin
process(a, b)
begin
y <= a + b;
end process;

end adder;

N-Bit Adder 81

File Edit Search Yiew ‘Workspace Design Simulation ‘Waveform Tools Window Help <«
= Qo & Q& BR Ne o fh ot 47
Marne: Walue | Stimulator o2l o 4 B0 0 81 W0 0 . M0 g0 o B0, 200 NS ||
EfL S Bina C.. 41§38 W85 477 ea yBB 4DD WFF @ e }(ss:J
+ & | <= TBH33 §33
Wy CHD D N O T I O
J | Lelle |

Figure 14.2 Simulation of the VHDL program in Listing 14.2

The top-level design shown in Fig. 14.3 can be used to test this N-bit adder on the
FPGA board. In this case we are adding two 4-bit switch settings and observing the sum
on the 7-segment display. To set the parameter N to 4 right-click on the adder symbol,
select Properties and click on the Parameter tab. Set the actual value of N to 4.

L btn(3:3) D—— T
:::::::::::::b‘.“.fw :"':U3 Lol
S i AL E?:(;D ek av_gen=—a to g(6:0) -
Coo s melkE ek D gl o aeopr—Dran(3:0) -
SEEEEHIEEHEEE = e S T S p St S
I R S T gsege
S (/<5 PSRN M- 1)) SN
DY - 1) S v IR S R
SOBREREEE D o lGND
.......... v 0ander. - - - R
- (7.0 Db B D70y -

Figure 14.3 Top-level design for testing the N-bit adder on the FPGA board

82 Example 15
Example 15

N-Bit Comparator

In this example we will design a N-bit comparator.

Prerequisite knowledge:
N-Bit Adder — Example 14

15.1 N-Bit Comparator Using Relational Operators

The easiest way to implement a comparator in VHDL is to use the relational and
logical operators shown in Table 15.1. An example of using these to implement an N-bit
comparator is shown in Listing 15.1. A simulation of this program for the default value
of N =8 is shown in Fig. 15.1.

Note in the process in Listing 15.1 we set the values of gt, eq, and /f to zero
before the if statements. This is important to make sure that each output has a value
assigned to it. If you don’t do this then VHDL will assume you don’t want the value to
change and will include a latch in your system. Your circuit will then not be a
combinational circuit.

Table 15.1 Relational and Logical Operators

Operator Meaning

= Logical equality

/= Logical inequality

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal
not Logical negation
and Logical AND

or Logical OR

File Edit Search Wiew Workspace Design Simolation Waweformn Tools Window Help “

= | FQSl ®Q Q& W 5
Mame Walue | Stirmulatar v B0 00 0 L0 e 250, 300 ns
#ey (ES Binaly Counten{1s)25 (38 3555 s)75 et 50 s (B8 CE D0 ES (Fo)08 i~ |
H By 75 <= 1GH7E 5

gt 1 | [

® e 0 |_|

=k D — [

4| | IS

Figure 15.1 Simulation of the VHDL program in Listing 15.1

N-Bit Comparator 83

Listing 15.1 comp.vhd

-- Example 17: N-bit comparator using relational operators
library IEEE;

use IEEE.STD LOGIC 1164.all;

entity comp is
generic (N:integer := 8);
port (
X : in STD_LOGIC_VECTOR(N—l downto 0) ;
y : in STD LOGIC VECTOR (N-1 downto 0) ;
gt : out STD LOGIC;
eq : out STD_LOGIC;
1t : out STD LOGIC
) i
end comp;

architecture comp of comp is

begin
process (x, V)
begin
gt <= '0';
eq <= '0';
1t <= '0';
if (x > y) then
gt <= '1';
elsif (x = y) then
eq <= '1"';
elsif (x < y) then
1t <= '1"';
end if;
end process;
end comp;

You can test this comparator on the FPGA board by creating the BDE block
diagram comp4_top.bde shown in Fig. 15.2. To make this a 4-bit comparator right-click
on the comp symbol, select Properties, click on the Parameters tab, and set the actual
value of N to 4. You will be comparing the 4-bit number x(3:0) on the left four switches
with the 4-bit number y(3:0) on the right four switches. The three LEDs /d(4:2) will
detect the outputs gz, eq, and /t. We selected these three LEDs because on the BASYS
board they are three different colors. Compile the design comp4 top.bde, implement it,
and download the .bit file to the FPGA board. Test the comparator by changing the
switch settings.

U1
..... . . SW(7:4) Id(3)
..... . . : X(N_1:O) eq =
ST BD—Fswao) [0) —D1d@:2)
..... y : g Id(2)
It
L ___ﬁﬁﬁﬁﬁcomp___ﬁﬁﬁﬁﬁ_ L

Figure 15.2 Top-level design comp4_top.bde to test a 4-bit comparator

84 Example 15

Appendix A

Aldec Active-H

Part 1: Project Setup

Aldec Active-HDL Tutorial

DL Tutorial

Start the program by double-clicking the Active-HDL icon on the desktop.

Select Create new workspace and click OK.

Getting Started

é " Open existing work space

example]vhdl
example] 3vhdl
example]3
adderd
example] 2vhdl
examnple] 2

chlbetwhdlexample whdl

[Always open last waork space

Cancel

Browse to the directory where you want the project saved, type Examplel for the

me and click OK.

New Workspace

Specify bazic informatdn about the new workspace.

Tupe the woyﬁace name:

scgtion of the workspace folder:

[CALBENWHDL \

Browse...

Iv Add Mew Dgign to Workspace

Catcel

123

124 Appendix A

Select Create an Empty Design with Design Flow and click Next.

Click Flow Settings

Select HDL Synthesis

Select Xilinx

ISE/WebPack 8.1 XST VHDL/Verilog v

Press Select

New Design Wizard

How waould pou like to create Design Resoulces?

" Create an Empty Desi

& ireate an Emply Desiar| with Design Flow

Nest >

Cancel

New Design Wizal X

Specify additional infarmation about the new design.

C-Syrithesis taol:
<nonex

Synthesis kool
<noney

Implementation taal:
<hohe>

Drefault Fammily:

Flow Settings

Block Diagrarm Configuration: | {sE =R o] B REGTEEEL

Default HDL Language: |vHDL hd

< Back I Mexts Cancel

Flow Configuration Settings

C Synthesis:

Tool name:

<none

Select Cancel

Help

<none>]
= Select
+ aAllela
5 A
b Ge
+-ig7 Cypress pelec
+ L]
IV B
+-MG Mentor Graphics
+ ﬁSynnpsys
+-C3 Synplicity j
N
& ilinx hd
ISE/WebPack 8.1 XST YHDL Aerilog cal Help ‘
ISE webPack B.1 Synthesi:
ISE 7.1 X5T YHDL/Verilog
q ISE 7.1 Synthesisklmplementation v
3 3

Aldec Active-HDL Tutorial 125

Flow Configuration Settings El
C Synthesis:
@g Tool name: [<nane> Select
HDL Synthesis:
gﬁ; Tool name: |><M|nx 1SE AwebPack 8.1 %5T YHDLMerilog
T Select Implementation

Physical Synthesis:

‘ Tool name: |<nune) Select

Implementation
Tool name: [<nane> Select

r T =l
Simulation: Select Implementation Tool [‘5_<|
I™ Use Server Fam -
D efals: <none> A
Family [~lings Automative_9500<L -l + A Actel
+ aAllera
ok Cancel ‘ Help ‘ + ,ﬂAlmeI
3
7. +-4g7 Cypress
Choose Xilinx il g
4
4
3
4

ISE/WebPack 8.1 M

MG -

R

.54
Press Select + £ Quicklogic

—-£1 Xilink
N
ISE/WebPack 8.1

\
ISE 71 v
Select Cancel | Help |
Flow Configuration Settings E‘
C Spnthesis:

@FS Tool hame: ‘(none) Select
Select Xilinx9X SPARTANIE for Family HDL Symthesi

; T ool name: ‘Xilinx ISE AwebPack 3.1 5T WHDLMerlog Select
I Use Server Fam
Physzical Synthesis:

' Tool name: ‘mone) %

Imiphsggentation:

ﬁ T oohgame: ‘XilianSEz’WebPackBW

Sirnulation:
I Use Server Fam
Defaults:

Select
Click Ok

Cancel Help

126 Appendix A

New Design Wizard [‘5_<

Specify additional information about the new design.

C-Synthesis tool:

Select VHDL for the Default HDL <nons>

Language Synthesis toal:
Hilire |SEAwfebPack 91 5T YHDLAerilog

Physical Synthesis tool:
<none>

Implementation toal:
Kilir |SE AwfebPack 9.1

mily: HilinsSx SPARTAN3E

\ Block Diagram Configuration: |Default Hw j

Default HDL Language: |VHDL A j

Click Next

Mest » | Cancel |

. New Design Wizard El
Type swled for the design name

Specify bazic information about the new design.

Type the desigh name:

‘swled

and Clle Next. Select the location of the design folder:
‘C: WLBEVWHDLAE wample1

Browse..

The name of the detault working library of the design:

anled

New Design Wizand The name specified here wil be used as the file name for the

library files and as the lagical name of the library. “fou can
change the logical name later on

The new design will have the following specifications:

Design name: swled

Cancel

Design directony:
CALBESWYHDLAE xample

Click Finish.

£ Back.

Aldec Active-HDL Tutorial 127

Part 2: Design Entry — sw2led.bde

EEIX

Active-HDL 7.2 Student Edition (Example1, swied) - Desizn Flow Manager

Ele Edit Search View Workspace Design Simustion Took Window Help

Do ox

B-= HEHE P EOKEEMYOR S e e e 00 %= (= o=
. [rop-Level selection el
Click on BDE. Do
‘Workspace ‘Example1’ 1
SE swled
&K Add New File
6 ackd New Lrary
i swied library
¥ design flow
= DESIGN: HDL Synthesis: Zilinx ISE/WehPack 9.1 XST VEDL/Verilog ~
X |o# DESIGN: Physical Synthesis: Not Defined
o # DESIGN: Inplementation: Xilinx ISE/VebPack 5.1
< > >
[Files /% Struc... CaReso B Consoe

s

Click Next.

X]

Mew Source File Wizard

Thiz wizard will create a source file with initial YHOL
code uzing the design specifications pou will enter in

\ the fallowing wizard dialogs.

The generated source file will contain the entity
declaration, port declarations and empty architecture
body.

v 4dd the generated file to the desigré

r this check box if pou do nat want to add the file

genengted by the wizard to the current design.

Cancel

Mew Source File Wizard - Language [‘S__<|

Chooze the language that will be generated from the
block diagram. Thiz can be changed from the Block
Diiagram Editor if required.

Select VHDL — | -
and Click Next T

\ " erlog

< Back Mest > Cancel

128 Appendix A

Type sw2led

and click Nex\

Click New.

N

Mew Source File Wizard - Hame

\T}lpe the name of the zource file to create:
|sw2led Browse

You can uze the Browse button to zpecify the file.

Type the name of the module [optionall:

By default, the module name is the same as the file name.

< Back Mext > Caticel |

Mew Source File Wizard - Ports le

aw[7:0]

sweled

To add a new port, click Hew.

To edit a port, select it on the list. Then you can change
itz name, direction and twpe. To guickly change the index
constraint of a port of a one-dimensional array type, use
the Aray Indexes box.

To remove a port, select it on the list, and then click
Dielete.

M armne: Arnay Indepes;
sw[7:0]

E| Ao =
Part direction

* in " inout
T out

A Mew | Delete | Type... |

< Back | Finish | Cancel |

Click New.

sl 7:0]
1d[7:0]

sweled

Mew Source File Wizard - Ports gl

To add a new port, click New.

To edit a part, select it on the list. Then you can change yd

itz name, direction and type. Ta quickly change the indey
canstraint of a port of a ohe-dimensional array type,
the Armay Indexes box,

To remove a port, select it on the list, an
Delete.
M ame;

el ld[7:0]

Fart direction
™ in fFant
("

I\A Mew | Delete | Type... |

Click Finish.

Type sw
Set array
indexes to 7:0

Type Id
Set array
indexes to 7:0

Click out.
/

Aldec Active-HDL Tutorial 129

This will generate a block diagram (schematic) template with the input and output ports
displayed.

File Edt Search ‘iew Workspace Design Simulation Diagram Tools Window Help

FrEol 02 @Y HORKI YL R L E8&

EBRB o QMR s

[Top-Level selection - TR 20 26 20 3§

0| Unsorted 8

Workspace ‘Examplel”: 1 [~

S swled 8
&N Add Nen Fie -

1 407 swled bde]
&S Add New Library -

fiff swledlibrary =

sw(70—

You will need to select the output port by dragging the mouse with
the left mouse button down and move the output port to the left.

T design flow T sw2led bde *

DESIGN: HDL Synthesis: Zilinx ISE/WebPack 9.1 XST VHDL/Verilog ~
= # DESIGN: Physical Synchesis: Not Defined
DESIGN: Implementation: Xilinx ISE/UebPack 9.1

v
< b >
[21 Files /#¥Struc...; 3Reso... H Console
To zoom specific area, hold down Shift and select this area, 6.590inch [4.040inch [Page 1/1

Select the bus icon and connect the input SV}/(710) to the output /d(7:0) as shown.
]

] |

File Edit Search Wiew Workspace Design Simulation Diagram Tools Window Help
'D"‘Iikﬁt.“.!li B BOMEE M YO S BH| e op 00

: B e Qe s kOB
[Top-Level se\e:tmn\ | s 15 +ozp o+ 25 fep o s . ap 45 50+ sl)
i \ R . |
@ Workspace\Examplel; 1 —1 : .
SHE swled 5
&% Add New Fil)
1 ip Tswzled bde B

@S Add Kew Libran
ffifl swled library

Click Save

40
[:] 4

hd

Arial vz ~B r U A- &+ FJ-[—|~ Py Y
% design flow & swlled hde *
DESIGN: HDL Synthesis: Xilinx ISE/UebPack 9.1 XST VHDL/Verilog ~

X | # DESIGN: Physical Synthesis: Not Defined
DESIGN: Implemencacion: Xilinx ISE/WebPack 9.1

< > >
[21 Files /$FStruc..., ZaReso B Consale

Press space bar to anchor a corner, 5,480 inch 3,030 inch Page 1/1

130 Appendix A

Ele Edk Search View Workspace Design Simulation Disgram Iooks Window Help

B-EH s L @Y BOLELMYCOR €S2 rmr e
i QMmaqagBs|
[Top-Level selection ~| G0+ 15 zp oz 3D 0 3§ 4+ 45 o+ 60 + &5 o+ 60 65

0| Unsorted

Workspace ‘Examplel’: 1
SEE swled
&% Add Mew File

pae
Right-click on sw2led.bde —1 % Cmsene

. Exclude From Compilation
and select Compzle Remave * R —— a1 L

@ Add fils to design

Refresh contents...

Design Compilation Order ..
enerate Code

Change Library...

onvert Black Diagram Symbols:

£ compile Al

2 Compile All with Fils Reorder
By Copy CtrlC 12 v B I UA- &+ F 1 —|s—-|~

T gwled.bde

Creste Hew Fold
(DiE T EDL Synthesis: Zilinx ISE/UehPack 9.1 X3T VHDL/Verilog

Rename Physical Synthesis: Not Defined
Implementation: ¥ilinx ISE/UebPack 9.1

Source Control »
£ Properties, . Alt+Enter

[21 Files g&lmw‘m

Part 3: Synthesis and Implementation

b h File Edit Search Yiew ‘Workspace Design Simulstion Tools Window Help
Click design flow 5%z e ey S OREEE O o 55 s s e

= ol B Be6 pEC

Foe @ E
i 1 L > 4
& mﬁ'
¢
? B
——

S

I3

Top-Level selection -
| unsorted

Workspace ‘Example1’s 1
“F swled
&K Add Hew File

Click L P
Synthesis 0pli0nS/ swled library

Tools

T design flow ‘& sw2led.bde

= # iroot top modules: suzled. -~
X | # Compile success 0O Errors 0 Uarnings Analysis time : 1[s].
o # done
v
< > >
[Files #Stuc_ igReso e

s

Aldec Active-HDL Tutorial

Pull down menu and select sw2/ed for Top-level Unit.

Synthesis Options

Design Files:
aeneral |/ Skd Synthesis | Adv Synthesis | 'HDL 1/ HDL 2/ %ilinx Specific ' | Include D braries | | Servel EE
1 P ¢ sw2led bde Top-level Unit | swzled |4
#{ post-synthesis Family | %linxsx SPARTANE v| Deviee |ss100etgied ﬂ
Speed Grade | -5 -
Simulation Cutput Format: € Wone ©F YHOL € Werilog
I™ Fitter Messages
|
Generste Synth. Script
Check VHDL
BASYS Board:
Select 3s100etq 144 for Device from pull down list.
Nexys2 Board:
Select 3s500efg320 for Device from pull down list.
<4 | =
Update synthesis order / Cancel | Help

Click

Click synthesis

Ok.

131

- =]x]

File Edit Search Yiew Workspace Design SmiMon Tooks Window Help e
B 0 E PF EUOKDREHYCH S| e op 000 = (= o= No smulation
[@wzied wzied) ﬁ\
ounsorted
& workspace Example1’: 1 design(s)
=HE swled
K Add New File
1 #HE-J sw2led.bde
H{7 post-synthesis
@ Add New Library
i swied library
fiil swled_post_synthesis library
i [CPU : 8.20 / 10.70 s | Elapsed : 8.00 / 10.00 s
-
Total wemory usage is 147720 kilobytes
Nunber of errors o 0 filtered)
MNunber of varnings : o 0 filtered)
Nunber of infos : 0 { O filtered)
INFO:NetListWriters:635 - The generated VHDL netlist contains Xilink UNISIN
Simulation primitives and has to be used with UNISIN library for correct
compilation and simulation.
Synthesis finished successfully. |
Close.
P
< | & =
B Files (¥ Stucture (5 Resources = design flow
~
v

© # Running synthesis...
X | o # Synthesis: O errors, 0 warnings

>

B Console

After synthesis is complete, click Close.

132 Appendix A

% Active-HDL 7.2 Student Edition (Example1, ;swled) - Design Flow Manager.

Fle Edit Search Wiew Workspace Design Simulation Tools Window Help

B-& o8 HF EONIEE MY QR @&/ e ow e w02 Gz [z o=

x

[Top-Level selection - E]
o |Unsorted =

Workspace 'Example1’; 1
SIE swled
A% Add New File
1 #1p- J sweled bde
#L07 post-synthesis
@S Add New Library

post-synthesis
simulation

Click implementation ——— g ot
options

Flow Settings

alherm wSiomm

%" design flow /T sw2led bde
© # done ~
X |- # Running synchesis...
© § Synthesis: 0 errors, 0 warnings E!
v
L9 | 3 > B
[Files /$FStruc... (3Reso. B Console
NS
Implementation Options |

Main | Core Insertion | Translate | Map | Advanced Map | Post-Map TR Place & Route || Post-Par 5TR [<]7]

Metlist File |C:,l’LBE,NHDL,l’ExampIe1,l'swled,l’synthesis,l’sw2led.ngc Erowse |
Fanmily Device |3s1008tq144 v
Speed Grade |-5 w
Wersian |ver1 R.evisian ; |rev1

Simulation Outpat Format € Mone & WHDL ¢ werilog
RunMode: 6 Batch ¢ GUI I auocose || Select

Generate Synth, and Impl. Script| Generate Impl, Script CuStOm COnStl”aintﬁle
F

I™ Filter Messages

Constraint File (UCF) Support:

Seleck constraint file ko be copied inka the implementation Falder: / Brawse |

™ Run implernentation with selected command File (mplerment, bat1: |
| Browse and select the file basys2.ucf
or nexys2.ucf available at www.lbebooks.com

ak, | Cancel | Help |

Aldec Active-HDL Tutorial 133

Select Translate and check
/ Allow Unmatched LOC Constraints.

Implementation Options

Main '/ Core Insgesi®n '/ Translate’ ' Map '/ Adwanced Map ' | Post-Map STR |/ Place # Route '/ Post-PaR TR [K[5

™ Do un Translabe

Wllow Unmakched LOC Constraints

¥ Use LOC Constraints

Metlist Translation Type Tirneskamp ~

T remmka A Rmds Femrn Pewke-

Shift for more options.... Select BitStream and

uncheck Do Not Run Bitge?\

Implementation Opt¥ions

ate) /Map | Aglanced Map | Paost-Map STR | | Place & Route | Past-PAR STR ' | Simulation |,/ BitStream | Ser (<3

General / Configuration Options | | Startup Options | ' Readback Options

I-‘jo Mak Run Bitgen

¥ Run Design Rules Checker (DRC)

¥ Create Bit Fil=

[T Create Binarv Confiauration File

Implementation Options rg

ste'Map'/ Advanced Map' Post-Map STR '/ Place & Route |/ Post-PAR STR' / Simulation |/ BitStream || Sera [

zeneral | | Configuration Options | Startup Options | | Readback Options

FPGA Start-Up Clack T CCLE F;
™ Enable Internal Done Fipe I COLE

User Clock
Done {Oukput Events) I
Enable Outputs {Output Events) I 5 / w
Release Write Enable {Qutput Events) I 6 / w
Release DLL {Output Events) I Mot ait / w

I Drive Done Pin High / /

T 7
Select Startup Options and select JTAG Clock
for the FPGA Start-up Clock.

Click Ok

0K | Cancel Help

134 Appendix A

e - [/x]
Window Help honox
[E=8= No simulation

i o B & e om0 r 5=z =

x

J

Click implementation
_—

FEx

Translate Map PostMap STFPIace&Routd’ostPARSTR Timing Configure
Completed C: Ci pleted Completed Completed Completed

simulation primitives and has to be used with SIMPRIN library for correct L

compilation and simulation.
Nurber of warnings: O
Murber of info messages: 1 -
Total memory usage is 100300 kilobytes

Created netgen log file 'time_sim.nlf'.
Executing e:y¥ilinxgiiibinintibitgen.exe —intstyle ise - "sw2led.ut”

swzled” "suwzled.pcE”

"gyzled.nod” M

0 warningis)

Implementation verl-srevi: 0 error (s,
| = Iwplementation completed Suceessfully. j
¥ design flo =
| S O - I O Close ~
2led' for timing si 3

When implementation is complete click Close.

Part 4: Program FPGA Board

To program the Spartan3E on the BASYS or Nexys-2 boards we will use the
ExPort tool that is part of the the Adept Suite available free from Digilent at
http://www.digilentinc.com/Software/Adept.cfm?Nav1=Software&Nav2=Adept
Double-click the ExPort icon on the desktop.

EEX

~ Digilent ExPort
File Edt Cortrol Help

Cornection

[eaobomiser o]
¥ futoDetect USB :I . . A X
Click Initialize Chain

Canfiguration Files

Scan Chain not initialized

3200RES BRI s
doorlock_top.bit
shift_reg_top. kit
traffic_lights_top. bit
bink_top.bit
modTOkcnt_top bit
muitsd_top.bit
chdivZ bit
hex7seq_tap.bit
i 7seg it
wTseq_top.bit
satdtit_top bit
adderd_top.bit
compd_top.bit

Initialize Ehai! ‘

xR Welcome to ExPort HERN

| >

Ready

D

Aldec Active-HDL Tutorial 135

Click Browse and go to Examplel->swled->implement->verI->revi->sw2led.bit

“ Digilent ExPort

Select sw2led. bit

File Edt Control Help

¥ futoDetect USE l:|

Configuration Files

seqdela_top.bit
douorlock_top bit
shift_teg_top. it
traffic_lights_top.bit
blink_top. bit

o Okent_top.bit
mults_top.bit
clkdiv2 bit
hex7seg_top.bit
T seg. bt

w7z top bit
sat4bil_top.bit
adderd_top.bit
compd_top.bit
suw2led.bit

Ready

[zl

Coninection
TDI ﬁ ‘
swled bit - Il o E

00E
b4
O

R

r

[E

;
Browse...
0.

“H
Fi

A
il
12!

HCl

DO ‘_l

5

Click Program Chain

7 "

‘ Initialize Chain |

‘ Program Chain -[

Initializing scan chain...
Found Device. IDCODE: £5845893
Found Device. IDCODE: 11c10093
Initialization complete.

Device 1: XC3S188E

Device 2: XCF82§

Your program is now running on the board. Change the switches and watch the LEDs.

136 Appendix A

Part 5: Design Entry — gates2.bde

e HDL 7.2 Student Edition (Example1 gates2) - Design Flow Manager

File Edit Search View ‘orkspace Design Smulation Tools ‘Window Help oy ox
B350 zgos @y 90%mEwyYon S b e e 10ms2] oy
s = g0 N
Click on BDE e ool -y
. Q| Unsorted . .
Workspace *Example1”: 1 de s
~{E gatesz [orions I8 ? F
@K Add New File . S posts,
Mo ot ehess
il oatesz library
Eza ?
¥ design flow
TF Desiont Desion pevesz alrendy astive. 3
* |0 # DESIGN: Default Design Language: WHDL
< # DESIN: Dofault BDE Langnnger VDL
< DESION: Cosgnenesta: Not Dofined
o # DESIGN: HDL Synthesis: Xilinx ISE/WebPack 9.1 XST VHDL/Verilog
< § DESION: Physical Synthesiar Not befined
o # DESIGN: Implementation: Xilinx ISE/WebPack 9.1
. g
< > 0
[3 Files /% Struc..., &Resou. WG
s
New Source File Wizard §

This wizard will create a zource file with initial WHDL
code uzing the design specifications pou will enter in

\ the faollowing wizard dialogs.

The generated source file will contain the entity
declaration, port declarations and empty architecture
bady.

Iv i&dd the generated file to the desigre

r this check box if you do nat want to add the file
ted by the wizard to the curent design.

Caticel |

New Source File Wizard - Language fgl

Chooge the language that will be generated from the
block diagran. This can be changed fram the Black
Diagram Editor if required.

Select VHDL — | | -
and Click Next s e i

\ " Verilog

< Back MNext > Cancel

Aldec Active-HDL Tutorial 137

Type gates2 S o Source File Wizard - Name X

and click Next. \ Type the name of the source file to create:

I b Browsze

You can use the Browse button to specify the file,

\ Type the name of the entity [optional):
|gat332

By default, the entity name iz the zame as the file narme.

Type the name of the architecture body [optional]:

gates2 By defaull}
entity name.

e architecture name is the same as the

< Back | Hest » | Cancel |

MNew Source File Wizard - Ports x|

TimeScale: To add a new part, click Mew.
Clle NeW 1nz /1 ps To edit a port, zelect it on the list. Then pou can change
. its name, direction and type. To quickly change the index
conztraint of a port of a one-dimensional array tupe, uze
the Array Indexes bow.

To remove a part, select it on the list, and then click Type a.
— s Delste. —

I amne: Fidexes:
44— =5 | =

Port direction

LO " inout
gates? ot
Set TimeScale MHew Delete | Type... |

< Back | Finizh | Cancel |

Mew Source File Wizard - Ports x|

Click New. TGl To add a new port, click Mew.

Thns/1ps To edit a part, zelect it an the list. Then pou can change

itz name, direction and type. To quickly change the index Type b
conzstraint of a port of a one-dimenzional amay lype, uze
— 3 the Array Indexes box.

To remove a port, zelect it on the list, and the
Delete.
a Mamme: Array Indexes:

=k T

Part direction

& in " inout
gates?2 ot
Set TimeScale e Delete | Type... |

< Back | Finish | Cancel |

138 Appendix A

Mew Source File Wizard - Ports

To add a new port, click Mew.
: To edit a port, select it on the list. Then you can change
Click New. itz name, direction and type. To quickly change the index

constraint of 3 port of a one-dimenzional array type, uze Type and_gate,
— 4 the Array Indexes bow.

Toremove a port, select it on the list, and then click
Delete.

and_gate f—

Mame: Tay Indexes:

= = Click out.
Port direction —

" in A/(“wgn\/

o fouk ™ buffer

Delete | Type... |

and_gate

< Back | Finizh | Cancel |

Continue to click New and add the outputs nand gate, or gate, nor gate, xor_gate, and
xnor_gate.

Mew Source File Wizard - Ports

To add a new port, click Mew.

d edit a port, select it on the list. Then you can change
k= hiame, direction and type. To guickly change the index
congtraint of a port of a one-dimenzional array type, uze
the Array Indexes box.

To remove a port, select it on the list, and then click
Delete.
M ame: Array Indexes:

nor_gate
T wol_gate |Hr'll:lr_gate |I| | :I
whor qate Port direction
= £ in " inout
gates? o out " buffer
Delete | Type... ‘
< Back | Finish o | Cancel ‘

Click Finish.

Aldec Active-HDL Tutorial

139

This will generate a block diagram (schematic) template with the input and output ports

displayed.

lation Diagram Tools Window Help g ox
ST SH ¢ LS S8 | » o g 100ns (5] 44 8 - | %3 (= = No simulation
BeoxQMmaQagqR.s KODOLLoIvHE~ I~-O~he XV 4 RE
1o 15 ¢ 20 + 25 + 30 35 o+ ap 50 55 ¢ Y . . f N\so + 85 108 inen

;I

0 —band!gate

—Snor_ gate
. —onr_gate
D Bnorigate 1|

L 3l
Arial vz B r U Av &~ FvJv—~ ~—lv
% design flow & gates2vhd & gates2a.bde T gates2 bde
Varnings Analysis time : 0.1 [3] -~
4 for top-level synthesis. &
Page 1/1

Select the output ports by dragging the mouse with the left
mouse button down and move the output ports to the left.

sace Design Simulation Diagram Tools Window Help

Click the Show Symbols Toolbox icon

BY HONEMWY S ! > EH
x B o~ QM QO QR kueo‘{ma-” =
=] o+ 15 . 20 0 25 . 30 + a8 50 65 + 70 ioh |
A . . . A | preess
L design(s) -1 % Buit-in symbols
= B] i et 1
LIl ::':”::Z”::Z"::.
- cogl— e . . '—Dandgate :
"l ‘:::DE%—.:::‘.::.‘:::"' ‘:'—Dnandﬁga@.:‘:::""‘ c N
: SR T Click + on
ol h{)nr gate i . .
. 1 -
” D ,ﬂmr el Built-in symbols
: T : :
= ;Iﬂxorgate;l_.;‘
i ol
B I—Dxnnr gata : el >
3 ‘..|__~_.__.__._.I
B : R~
¥4 |
> Arial ~hz B 7 U A~ &+ Fv—v[—|v—~—~
{Resources % design flow ;= gates2.vhd & gates2a.bde ;& gates2 bde ™
0 Errors O Warnings Analysis time : 0.1 [s] ~
evel selected for top-level synthesis. <
Page 171

140 Appendix A

Grab the and2 symbol with the mouse and drag it to the output port and gate

Design Simulation Diagram Tools Window Help & on ox
F OGS MY QG ®EH e %= [= 5= Mo simulation
2 B oo QM L gRs ue 2o LA=-7 x
- io 15 30+ 35 30 35 0 40 0 45 o E@ v 6 o o A o Tp inch |
oLl . LIl ::::d Nams ~
et 1] = o : N e]
" I N
E:D—F—Dand_gate
=] andsha
—Zrnand_gate [
al —or_gate and4bl
A T S S P anddtz
- and4b3
o and4b4
buf v
£ b
2
. Ll ——]
Wl KT
> Arial ~iz~lB r o A &+ F+Iv[—|~ >l 4
ESOUICES ¥ design flow ;5 gates2.vhd ;T gates2a.bde ; & gates2 bhde *

Grab the symbols for nand2, or2, nor2, xor2, and xnor2 and drag them to the
appropriate output port, moving the output ports down as necessary.

& Design Simulation Diagram Tooks Window Help o ox
FEORESIMYTOHR © & EN& | » m g 100ms 2 o3 (¥ o= Mo simuiation
= B e Qomaq &5 258 = QDDD'L'L%' x
| fo : 15 20 25 30 . a5 50 85 50 o5 + 70 inch |
e . . - || = A
lesign(s) =1 - TR
= \ .5
) { Dfﬂand_gate
or i

{1k __:aEk' . .: Dﬂnandga{e :
BE 8 dr ik *—D;_Dur_gm.. Lini 2
B Y e gt
e S __]D "Qqur,ga.te. e

j ﬂxnor gate

g5 o

40

> And 12 ~B 7 U A~ &+ Fv—v[—vr—~—|~

Resources ' design flow ;= gates2.whd & gates2a.bde ; & gates2.bde ™

| Exrors 0 Warnings Analysis time : 0.1 [s]
rel selected for top-level synthesis. v

and select this area. 6.510inch 3.530inch Page 1f1

Aldec Active-HDL Tutorial

141

Select the wire icon and connect the gate inputs to a and b as shown.

File Edt Search View Workspace Design Simulation Diagram Tools Window Help S ox
=R dh=5 T U A DY BOoO DY S £ e o 5= = Hlo simulation
z @ Qmeaqaals I O LL = x
[Tap-Level selecti -] io 15 o+ 20 o+ 25 30 o 45 1 &0 0 65 o+ B0 o+ &5 1+ 79 inch ‘
0 [unsorted j Name A
workspage 'gates": 1 design(s) = or3b3
S gatesz 500 6 opa gUGloln 3 0 6 0 6 00 6606 d
&K ndd e ﬂDand gate ordbl
1 0 7 gates2 by - W = ToonoThr
+fffff gates2libr. - =
= = e
_ f.;-_)D—i_—D:orja_te; : anor2
o, 4 i
A 5
—.;_D‘-'*_—Drjur_gatg - o
\ N] sy) .] xord
Click Save | e g2
- Ul - 500G + SPARTANG
B [] xnor_gate
o e e RS, +| SPARTANSE
R -] >
=
o
i 1 I
< > Arial iz B 7 U A & Fe v [—|~ |-
|2 Files /% Structure CiResources B design flow =l gates2vhd T gates2.bde
Compile success 0 Errors O Warnings Analysis time 0.1 [=] v
= # Error: No top level selected for top-level synthesis. ~
>
H cConsole
Pags 1/1
Flle Edt Search View Workspace Design Simulston Diagram Took indow Help
Breld x99 8 @F BOoMESH YW S HBH | e 100
% @ QG &MmE | &5
”TOD'Leve\ selection | i 15 0 15 30 38 4 a5 50 55 60 65 0
o unsarted
workspace 'gates”: 1 design(s) =1
i gates2 . G
A% Add Hew File " ﬂDand gate
1u = hE =
i
. . dNewli OPen [o
nght—Clle on gatestde “ T+l gatesziiy CpeninExternal Editor L ﬁD»—Dmandigate
Exclude from Compilation 4”0—D_’_D
and select Compile : e
@ Add file to design 4 Ll o
Refresh contents. . WDmur_gate
Design Compilation Order.., ! Ll
[F %0r_gate
02 Generate Code e
FLl W ’Doi'—Dxmnr_gate
Change Library. ..
B2 convert Block Diagram Symbals. ..
£ Compile Al
&2 Compile Al with File Reorder
- - A~ P A —1 D=
< B2 Copy CrrkC | k= B7ZUA- &4
B Files /3 Stn El gates2uvhd T gates2.bde
Compile su Y Creste New Folder Blysis tiwe : 0.1 [3]
X|e# Error: No Rename el synthesis.
>
[Source Control »
Properties... Al+Enter
Compiles current file

142 Appendix A

Part 6: Simulation

Click design j{ow and then Click functional Simul/ation options

*_Active-HDL 7.2 Student Edition (gates ,gates2) - Disign Flow Manager
File Edt Search Wiew Workspace Design Simulation Tool indow Help

B2l gl @F 0oKEEWMT OB O bess]| v w0 =

[General |/ Server Farm |

& Run With Selected Options

Ha simulstion

vel selection

o|Unsarted \
Workspace "gates”: 1 design(s)

Sl gates2

&% Add New File

FHE-Jgates?.bde

] gatesz.vhd

% Add New Library

gates2 library

Input Files:

(| — H

> "\\
—< Select gates2.bde
Toplevelunt | | T I~ and ! and then

" Run With Selected DOYTCL Script] .
click OK

Macra File |

Click here to select /

design files

I

| I]

[E1 Files & Structure i3 Resources

o # Cowpile krchitecturs "gatesZ" of Entity "gacesz™ &l
° # Compile success O Errors O Warnings Analysis time : 0.2 [=] ~|

>
B Console |

[I s

Click Choose, select gates? as the top-level design, and click 4dd.

*_ hctive-HDL 7.2 Student Edition (gates ,gates2) - Design Fiww Manager

File Edt Sesrch View ‘Workspace Design Simulson Tools window\ Help

S E&® A r wsHd 8 < =iz N smulatian |

m

Top-Lewel selection -
0 |unsorted

workspace 'gates": 1 design(s)

lnputﬁe\ \ = X #| #| waveforms:
=]

T Y

Select top-level unit(s)

Clle OK - Top-Level Urit Choose| Recampil: Fikes
— Wected DOJTCL Seript

‘Ma[m Fike |

Ok r‘

v

QK. Cancel

</ I | @

&l Files % Stucture T3 Resources
o # Compile Architecture Mgates2” of Entity Mgatesz” Al
= # Compile success 0 Errors O Uarnings Analysis time : 0.2 [s] ¥

>

B Console |

[oo s

Aldec Active-HDL Tutorial 143

Click Use Default Waveform

runctional Simulation Dptions

Genexgl | Server Farm
& Run Wy Selected Options
Input Files: 2 % 4 #| wavefams:

srcigates2. bde J

il Al _IJ

¥ Use Default Waveform
Top-Level Unit [gates? Chooss | Recompile Files Generate DO Macra
™ add Signals Gk From Current Hierarchy Level

€ Run With Selected DOJTEL Seript

‘Macro File ‘
/V 0K Cancel Help

Click OK

Click functional simulation

@ Active-HDL 7.2 Student Edition (gates ,gates?) - Design Flow Manager
File Edt Search Yew Workspace Design Smulation Tools Window Help
Brwl xuE @F 90T

%

Ko simulation

\Tup{eve\ selection j

0 |unsorted

workspace "gates’: 1 design(s)
=5 gatesz

&% Add New File
1 —Ho-/gatesz.bde
8/ gates2.vhd

% Add Mew Library

“ff gatesz library

Tools

I3
L

< I
B Files % Stucture iy Resources T esion iy

= # Compile Architecture "gates2” of Entity "gates2" ~
X |2 # Compile success 0 Errors 0 Warnings Analysis time : 0.2 [s] v

>

B Console

NUM NS

144 Appendix A

The waveform window will automatically come up with the simulation already
initialized. Make sure the order is a, b, and , nand_, or_, nor_, xor_, xnor (grab and
drag if necessary). Right-click on a and select Stimulators.

Fle Edt Search Wiew Workspace Desin Simulation Waveform Iools Window Help o ox
Brol sz s @y BOMMENTOH £4& e opp o Hew
x| % By] k QS @ S G € %y AR L I L
’ﬁgatesz j B0 0 BD WO 120 0 40 4 160 0 180 0 200 0 220 0 240 0 280 4 ZBO ’\Sl
#{F gates2 [
25 add Signals... Chr+l
Insert Empty Row
Insert Mamed Row
Create Expression Signal
o | $ Cut Chris
= By copy CrkHC
Name Walue
Hide/show
¥ Delete Delste
Clear WaveForm
4 Find... Crl4F (][] ’J
«|o»
i View Declaration
B design o hde . #lwaveform e
View in Dataflow
4 EE Add to Advanced Dataflow ialization done. G
2 |o# a1 ated 1613 kB (elbread=1031 elab2=300 kernel=281 sd£=0}
4 o B Properties. . AR+Enter |13 no0s
Siwulacion has been initialized
Selected Top-Level: gatesz [gatesZ)
wave
wave /gatesZ/T .gatesZ.T
No signals matching v
< > >
[21 Files 3 Struc... /Z5Resou B Consols

Select Clock and set Frequency to 25 MHz

View Workspace Design Simulation ‘Waveform Tools WNqdow Help o ox
B @y BORENEMYCH &8 e orl e s HM W
= % B 1’z Qo g Q& & AR LS L

Fie Edi
- &

[Eoatesz ~N Toml |
{kgates2 \ z — =]

= <

cend

S stimulators

o P Signals | HoRewg | Predfined |

= nor_ x o g o cock puso o pacic ey and

® wor_ ¥

- wnor_ ¥

Clock

Hame value

fo i :

o =
Famula Frequency:
o010
110

I Display paths Save Vel = | Apply Stength [Overide _».

M«\DMJ
= design flow = /
7

ne. ~
{elbread=1031 elab2=300 kernel=281 sdf=0)

KERMEL: Kernel process initialization
kllocation: Simulator allocated 1613
2:51 PN, Tuesday, January 13, 2009
Simulacion has been initialized
Selected Top-level: gates: [gatesf)
wave

wave /gates2/® .gatesz.T
No signals matching

< > -
[2) Files 3F Struc... ZiResou. T B

s

Click Apply

Aldec Active-HDL Tutorial 145

Click on b, select Clock and set Frequency to 50 MHz

File Edit

arch View Wworkspace gn Simulation Waveform Iools Window Help onox

MR By BRI YO W & (LT |
= b QS Q& U AR ne o g oot | 4

B - =

[Rautesz =] | o] N\ |
-4k gatesz =3 0 Nk . \ =

b . \

® and_ «

= nand_ M Stimulato) =

®ar_ M Signals \ Hatkeys |

- nor_] Signak: T 5353 2 ek pulse of a specifc fiequency and

= o * Hame Type

¥ a Clock
o, ®
= I
Harme Value :
Formula o Frequency: [FOMHz

010
110

I™ Display paths Save val Apply ‘ Shength: [Overide =

Ch
¥ decign flow =

KERNEL: Kernel ppec®ss initialization done.

~
% |« # Allocation: Rlator allocated 1613 kB (elbre; 031 =1sb2=300 kernel=281 sdf=0)
Tesday, January 13, 2009
£tion has been initialized
Elected Top-Lewel: gatesz (o
wave /gatesZ/® .gates
Mo signals matg v

<
[E1 Files 35 ZResou

Click Apply

Click Close
Set simulation time to 200 ns

Click here to run simulation

File Edit Seach View Workspace Design Simulation Waveform Tools Window Help \ ‘ o x
Br-gld s 98 @y mORikREfYCh 2o . » oz00ns 4 W vz
x I}QL[}“QQ&"M T 20| ¢ ! |
[Roatesz | || Name Value | Stimulator L0 0* R R S R RTINS RAIEE e, El
=B gatesz v o iClock I L\ 1 I \ T \ r":kj
) a Clock
et 0 T L\ [1 I 1 T
ermend 0 L\ [[[|
oo v (] LN [[[
om0 . 1\ 1 1 1
e 0 L] \ T\ 1] 1 \ \] L
ewoL 1 T] T \ I \] \]

Hame Value

<
T design flow & gates2bde T gates2.bde . @waveform e.

z:51 PN, Tuesday, January 13, 2009 ~
X |o# Simulation has been initimlized

Selected Top-level: gates? (gates?)

vave

wave /gates2/T .gatesZ.®

No signals watching

run 200 ns

KERNEL: stopped at tiwe: 200 ns ~
< > >
[3) Files % Struc... (Resou B Console

Click Zoom to Fit.

146 Appendix A

Part 7: Design Entry - HDE

Click on HDE.

Select VHDL
and Click OK.

Click Next.

Type gates2

and click Next, —————

BEE
Ele Edt Search Vew Workspace Design Smulation Iock Window Help @ ox
v 5 2N | ¥ mOL S [»ow e s %= (= o= o smulation
[Top-Level selection
o [unsorted
B Werkspace ‘gates® 1 design(s)
S8 gates?
A% addnewFie
#% Add New Library
il gatesz library
.\ :
1 Select template:
= & yHoL
- © verlog
F SystemC
o Cancel
¢ > 1=l
B Fies % Stucture &3 Resources

= design flow

< # Compile Architecture "gatesZ” of Entity "gates2”
o § Compile success O Errors 0 Varnings Analysis time : 0.2 [s]
>

B Console

MM TS

New Source File Wizard El

TimeScales:

\ Thned1ps

This wizard will create a source file with initial Verilog
code using the design specifications wou will enter in
the following wizard dialogs.

The generated zource file will contain the module and
port declarations.

Iv iAdd the generated file to the desigre

r thiz check box if you do not want to add the file
genetsted by the wizard to the curment design.

Cancel |

New Source File Wizard - Name r‘s_(|

\ Tuvpe the name of the source file to create:

|gates21 Browse

N

‘Y'ou can uze the Browse button to specify the file.

Type the name of the entity [optional):

By default, the entity name iz the same as the file name.

Type the name of the architecturs bady [optional):

Cancel

Aldec Active-HDL Tutorial 147

New Source File Wizard - Ports x|

TimeScale: To add a new port, click Mew.

1ns/1ps To edit a port, select it on the lizt. Then pou can change
itz name, direction and type. To quickly change the index
constraint of a port of a one-dimenzional aray twpe, use
the Array Indexes box,

Click New. To remove a port, select it on the list, and then click /Type a.

— Delete.

Mame: ET
A< H | =

Part dirsction

& in ' inout
gates out
Set TimeScale Delete | Tupe... |
< Back | Finizsh | Cancel |

Click New. X

Tirmes cale: To add a new port, click Mew. Type b

1nsd1ps To edit a port, zelect it on the lizt. Then you can change '
its name, direction and type. To quickly change the index
conztraint of a port of & one-dimensional aray type, use
the Array Indexes box.

Toremowve a port, zelect it on the list, an m click
Dielete.
a Mame: Amray Indexes:

e b H T

Port direction

' in € inout
gates?2 &
Set TimeScale Hew Delete | Type... |
¢ Back | Finigh | Cancel |

New Source File Wizard - Ports

Click New.

TimeScals: To add a new paort, click MNew. Tvpe z
Tnsd1ps To edit a port, zelect it on the lizt. Then pou can change yp :
itz name, direction and type. To quickly change the index
conztraint of a port of a one-dimensional aray type. use
— 9 the Array Indexes bow.
Toremove a port, select it on the list, 3 en click
Delete.
2[5:0] o a Mame: Array Indexes:
— b b 250 El 0 =
501 - = Set Array Indexes
Part direction ~ .
" in " inout to 5:0.
L Coue—]
Set TimeScale | Mew Delete | Type... | Cth out.
< Back | Firizh K' Cancel |

Click Finish.

148 Appendix A

This will generate a VHDL template with the input and output signals filled in. Delete

all the comments and replace them with the single comment
-- Example 1: 2-input gates

@ Active HDL 7.2 Student Edition (gates ,gates2) - c:\LBEWHDL\gates\gates 2\srclgates2.vhd *

Fls Edt Seaich Wew Workspars Design Simulation Tools Window Help x
Bz E @F IONMSHYOR Bedd Hoe 00 Mo simuation
2 H LW s] B>
‘Tup-levs\sele(liun B [sertEdge ~l @R e A %
o] unsorted 1 =t
[@ workspace ‘gates’: 1 design(s) 2 . \ ml
SEE gatesz el Title : gatesz
&K add vew Fie H LR
1 8 7 gatesz.hd g == Author : Darrin
@ add ew Library - - Company oo
“ifff gates2 library = B
ER—
10 File : gates2.vhd
11— From : imterface description file D 1 t th
12 - By : TEFZVRAD ver. 1.20 e e e ese
[[tatem
i1 statements.
15
16 Description :
N - =
158
19
20 ——{{ Sectiom below this comment is automatically maintaiged
21 - and may be overwritten
22 --{entity (gates2) architecture {gates2}})
23
24 library IEEE:
23 use IEEE.STD_LOGIC_1164.all;
3 |
27 entity gates2 is *
25 pore()
29 in STD LOGIC; ¥
< | &
3 21]« »
B Files /% Stuctwre & Resources ¥ design flow 2 gates2.vhd *
= # Compile Architecture "gatesZ" of Entity "gatesz” ~
% |e# cowpile success 0 Errors O Uarnings Analysis tiwe : 0.2 [3] v
>
B Console

Ln 10,Col 28 UM NS

n (gates ,gates2) - c:\LBEXVHDL\gates\gates 2\srcigates

Fle Edb Search Miew Workspace Design Simulation Tooks Window Help D o»ox

Br-EH o E §F 0oy O G Be®H| »w e 00l Ho simulation
= 3 =z LW L] =
[fop-Level selection = v N e A % %
o|unsorted 1 ——Example [t: Z-input gates =
Workspace 'gates": 1 design(s) 2
i gatesz 5 library IEEE;
&K Add New Fle [use IEEE.STD_LOGIC_1164.all;
1 7 gatesz.vhd 2)
Add New Library i enticy gi“(“ =
- por
e tes2 lib
it gavesz brary 5 a : in STD_LOGIC:
=} b : in STD_LOGIC:
10 z : out STD_LOGIC_VECTOR(:S downto 0}
11 DB
1z end gatesz;
13

14 ——]) End of antomatically maintained ssction
= Delete these

16 architecture gatesZ of gatesZ is

[- comments.

19 -— enter your statements here —-—

21 end gatesz:

< |

5] Files & Structure &3 Resources

|8
LV«M»M

" design flow : El gates2.vhd *

= # Cowpile Architecture "gatesz" of Entity "gates2” -~
¥ |o# Compile success 0O Errors O Warnings Analysis time : 0.2 [s] v

>

B cConsole

Ln 1,0l 11 NUM [INS

Aldec Active-HDL Tutorial

149

Active-HDL 7.2 Student Edition (gates ,gates?) - c:\ BEWHDL\gates\gates2\srclgates2.vhd

File Edt Search View Workspace Design Simulation Tools ‘Window Help o»ox
H O E @ BOoGES YO B | e o op 100ns Ho simulation
2 x = H O . B »
| _fep-Lovel ssleation B [enbdes] o
Cl]ck SaVe o[Unsorted 1 —-Example 1: 2-input gates =
Workspace ‘gates”: 1 design(s) P
, gates2 | library IEEE:
$ Add New File [use IEEE.STD_LOGIC_IIE‘{.Ell:
15
L & entity gatesz is
d port{
= a : in STD LOGIC:
=5 b o in STD_L[IGIC;
10 z : out STP_LOGIC VECTOR(S downto 0]
11 1
12 end gatesi; 1
13
3 14 architecture gatesZ of gatesZ is . .
/ 5 beatn Type in these six
. 17 z(5) <= b and @]]
Click on + dnd then 6 tin - norts mna ws / signal assignment
. N 12 Z(3) <= b or a;
Right-click on oo statements
= - b xor
22 zi0) <= not(b xor a); : .
gates2.vhd and = (see Listing 2.1 of
24 end gatesi;
select Compile > Example 1) -
27 =
2 1€
[< N 25: . 2
[51 Files & Structure & Resources T design flow = gates2.vhd
o # Cowpile Architecture "gates2" of Encity "gatesa™ ~
X |5 # Compile success 0 Errors 0 Uarnings Analysis time : 0.1 [s] v
>
B Console
Ln 22,Cal S HUM INS

Part 8: Simulation — gates2

Click design f{ow and then Click functional Simullation options

r2-HD

dent Edition {gates ,gates St

Fie Edt Search
M

- Heo
G pBG

B¥ 8L

B

View Workspace Design Smylation Tooks Window Help

ST H D

= (= o=

Ho simulation

[Top-Level selection

o |unsorted

Workspace "gates': 1 design(s)
ZIfE gates2
&% Add New File
1 w8/ gates2.vhd
§S Add Mew Library
=] gateszlibrary

Click here to select design files

<

B

Files ¥ Structure 5 Resources

% design flow (S gates?vhd

General | Server Farm

@ Run with Selected Options

 ontions | Tnpuk Files:

v 2 ¥ 4| *| waveforms:

o X 2 4

=]

Seiect design files

|

Tap-Level Unit [gatesz

" Run With Selected DOJTCI

Macro Fie |

= # Compile hrchitecture "gatesz” of Entity "gates2"

X |=# Compile suceess 0 Errors 0 Warnings

>
B Console

Analysis time :

[

®
=]

Select gates2.vhd,
™ click > to move
and then Click Ok

Es
<=

|
o
Cancel

aK

1 [s]

< >

150 Appendix A

Click Choose, select gates? as the top-level design, and click 4dd.

“*_ Active-HDL 7.2 Student Edition (gates ,gates:) - Design Flow Manager

Fie Edt Search Wew Workspace Design Simulation TNl Wfindow Help

|Tup1m\ selection

No simulation \

0| unsorted

workspace "gates’: 1 design(s)
gates?

&% Add New File

] XK 4 | waveforms:

X 4 4

]

Select top-level unit(s)
Top-evel:

Click Ok

gates2

\

;lJ
-.\ Top-Level Unit [gatesz Choose| Recor & DO Macro
 Run ed DO/TCL Script
Macra File | Browse |
R -
> Cancel
¢ w @
[1 Fies /3 Stuctue ;& Resources

=

o # Compile Architecturs "gatesz” of Entity "gatesz”

= # Compile success 0 Errors O Warnings Analysis time :

Click Use Default Waveform

Functional Sivwlation Options

Input Files:

~
0.1 [s] 3|
>
B cConsole [/
[oM s

srofgatesz, whd

E ﬂ ﬂ Waveforms:

Bl

-

Kl -«
¥ Use Default waveform

Top-Level Uit Igates2 Choose| Recompile Files

™ add Signals nly From Current Hisrarchy Level
" Run With Selected DOJTCL Script

| Macro File I

Generake DO Macro

/’

Browse

ok Cancel Help
Click Ok —

Aldec Active-HDL Tutorial 151

Click functional simulation

@ Active-HDL 7.2 Student Edition (pates ,pates2) - Design Flow Manager
File Edit Search Yew Workspace Design gGmulation Tools Window Help

B~ = w=HE @Y IOoRES YOS

o simulation

x

[Tap-Level selection |

o[ursorted
Workspace "gates’: 1 design(s)
=5 gatesz
&N add Hew File
1 8/ gates2.vhd
@S Add Mew Library
=] gateszlibrary

The waveform window will automatically come up with the simulation already
initialized. Make sure the order is a, b, z (grab and drag if necessary).
Right-click on a and select Stimulators.

® Active-HDL 7.2 Student Edition (Examplel ,gates2) - Waveform Editor 1 *
File Edit Search Visw \Workspacd\ Design Smulstion Waweform Toold Window Help

Br-EEH zoe § L E M T

L4 o owop 10 e ow o= [

ne 2 dh 9! 4
ﬁgatesz C B0 0 80 N0 . 20 . 0 0 o B0 . 200 . 20 4 240 . 260« 290 ns |
#-IF gatesz J
1 Add Signals... e+l
T
Insert Empy Row
Insert Mamed Row
- Create Expression Signal
Hame Value
cut Chrl
By copy e
HidefShow
¥ Delete Delets
Clear waveform
&4 Find. .. ChrF
Wiew Declaration
< | = Wigw n Dataflow BRED
[Files % Structure /&3 Resou % desig Addto Advanced Dataflow m e
©# 1:58 PM, Thursday, June 05, 2008 B Properties... Alt-+Entsr ~

X |o# simulation has been initialized
o# BSelected Top-Level: gates2 (gaces2)
o wave
o wave /gatesi/t .gatesi.t
@ # No signals matching

[£4]

>
B Console

152 Appendix A

Select Clock and set Frequency to 25 MHz

Active HDL 7.2 Student Edition (Example1 ,gates2) - Waveform Euitor 1 *

File Edt SeatQ View Workspace Design Smulstion Waveform Took WinddW Help &
By Homimanrom NG - 28| » v osHaw <[5zl
IR CEEEE RN s e

Name alue[Stmul 120 N0+ @ o @ 0 . oo o w0 k0 . B0 o on0 20 o 240 e . aw |
=2

Elgates2
--{F gates2 SO 0 Clock =]

- Stimulators

=] Signals | Hotkeys
Name value Signls Forces awgck pulse of a specific frequency and
Frequency:[25MHz__]
[~ Display paths Save Ve | Tipply Stength [Ovende x|
& I} N @)
[& Files $FStructurs oy Resou.. |

Close

= # 1:58 PM, Thursday, June 05, 2008
°# Simmlation has been initialized
2 # Selected Top-Level: gates? (gatesz)
| o wave

| o wave /gatesa/T .gatesz.+

| " # No signals matching

Console /

[

Click Apply

Click on b, select Clock and set Frequency to 50 MHz

- Active-HDL 7.2 Stuacat Edition (Example1 ,gates2) - Waveform Editor 1 *

Fle EMNGeash Yiew Worlmgee Desian Simuation Waveform Tools Window Help Ho»ox
B-SNge s DG oo E M T om0 NSS »rr w5z
Peaics Biowes [$Be|oa|[[ratn QQ Qe wwms e 6554

Eoatesz = e Value| Stimul mzu A -\Qu ©o80 100 0 120 4 MO0 0 8D 4 B0 . 200\ 220 . 230 0 280 4 240 ns|
-4k gatesz =3 T N\ =

& 1] Clock \
o - X N\

fame |value Forces a O\

duly cycle

[Display paths

Stength. |Ovenide ~|

& I Bl 3
[21 Files % Stucture Z3Resou..

= # 1:58 PM, Thursday, Juns 05, 2008
© # Simulation has been initialized
© # Selected Top-level: gates2 (gates2)
= wave

o yave /[gates2/* .gatesZ.®
© # No signals matching

>

B Console |

s

Click Apply

Click Close

Aldec Active-HDL Tutorial 153

Set simulation time to 50 ns

Click here to run simulation

Active-HDL 7.2 Student Edition (Examplel ,gates2)j=Wav=form Editor 1 *

Fle Edt Searrh View Workspace Design imulation Waveform Tools Window DRI
- p Sins e W %= (= 5=

- 2(d)

-l s nE Fy gONEEMYC®
= FQSHE 4 ag U 20§ ot | 4

[@oetes2 =] |[Hame Value | Stimul. R o R R . = B R w 0. |
& 4 gatesz =a 0 iClock \ ™1 . =

=p 1 iClock | 1 ’

Er 18 s CHE | 25 g |

= 26) | |

| |

|

|

|

|

0
1
J =23l 1
= | —
Harne value / a ! |
= 2(1) 1 {
sd 0 |
= > il | MO\”H
|8 _Files /¥ Structure /&9 Resou ¥ design flow =] gates2y : dhlwaveform e I
Jllocation: Simulator allocated 1613 kB (elbread=1031 elabZ=300 krnel=281 sdf=0) ~

#/ 2:13 PN, Thursday, Juns 05, 2008
Simulation has been initialized
% Selected Top-Level: gates2 (gatesZ)

x

run 50 ns
KERNEL: stopped at time: 50 ns

>
B Consale

Click + sign to show all elements of z.
Study the waveforms for various magnifications.

To print out this waveform you can detach it by clicking >> here and then
press Alt Prnt Scrn to copy it to the clipboard. Then paste it in a .doc file and print.

154 Appendix A

Appendix E
VHDL Quick Reference Guide

VHDL Quick Reference Guide

189

Category Definition Example
Identifer Names | Can contain any letter, digit, or a0
underscore Prime_number
Must start with alphabetic letter lteflg
Can not end with underscore or be a
keyword
Case insensitive
Signal Values ‘0’ = logic value 0
‘1’ = logic value 1
‘Z’ = high impedance
‘X’ = unknown value
Numbers and <base>#xxx# 35 (default decimal)
Bit Strings B = binary 16#C# =“1100"
X = hexadecimal X"3C” = B"00111100”
O = octal 0"234” = B"010011100”
Generic Associates an identifer name with a generic (N:integer := 8);
statement value that can be overridden with the
generic map statement
generic map Assigns a value to a generic parameter | generic map (N => 16)
Signals and signal (used to connect one logic | signal d : std logic_vector(0 to 3);
Variables Types | element to another) signal led: std logic;
A . . variable g: std logic vector (7
variable (variables assigned values in - "~ downto 0);
process) variable k: integer;
integer (useful for loop control
variables)
Progran1 library IEEE; library IEEE;
structure use IEEE.STD LOGIC 1164.all; use IEEE.STD LOGIC 1164.all;

entity <identifiers> is
port (
<port interface list);
end <identifiers;

architecture <identifier> of

entity Dff is

port (
clk : in STD LOGIC;
clr : in STD_LOGIC;

D : in STD LOGIC;
g : out STD LOGIC) ;

<entity name> is end Dff;
begin
process (clk, clr) architecture Dff of Dff is
begin begin
{{concurrent statement}} process (clk, clr)
end<identifiers; begin
if(clr = '1') then
g <= '0';
elsif (rising edge(clk)) then
q <= D;
end if;
end process;
end Dff;
Logic operators | not z <= not y;
and c <= a and b;
or Z <= X Or y;
nand W <= u nand Vv;
nor r <= s nor t;
xor Z <= X XOr y;
xnor d <= a xnor b;

190

Appendix E

VHDL Quick Reference Guide (cont.)

Arithmetic operators

+ (addition)

count <= count + 1;

- (subtraction) q<=4d9 - 1;

* (multiplication)

/ (division) (not synthesizable

rem (remainder)
Relational operators | =, /=, >, <, >=, <= if a <= b then

if clr = ‘1’ then

Shift operators shl (arg,count) ¢ = shl(a,3);

shr (arg,count) ¢ = shr(a,4);
process [<id>] process(<sensitivity list>) process (a)

{{process declaration} }
begin
{{sequential statement} }

variable j:
begin
j := conv_integer(a);
for i in 0 to 7 loop

integer;

end process [<id>] if(i = j) then
y(i) <= '1';
else
y(i) <= '0';
end if;
end loop;
end process;
if statement if(expressionl) then if(clr = '1°)Othen
: q <= 1 |'.
{{#aﬁnneng}} elsif (clk'event and clk = 'l') then
{{elsif (expression2) then g <= D;
{{statement;}} }} end if;
[[else
{{statement;}}]]
end if;
case statement case expression is case i is 0 (o)
. . . when " " => Z <= C H
((when choices => {sequential when "01" = z <= c(1),
statement; } })) when "10" => z <= c(2);
{{...}} when "11" => z <= c(3);
when others => {sequential when others => z <= c(0);
end case;
statement; } }
end case;
for loop for identifier in range loop zv = x(1);
tial statement} for iin 2 to 4 loop
{{Sequen zv := zv and x(1i);
end loop; end loop;
Z <= ZV;
Assignment operator | := (variable) z =z + x(i);
<= (signal) count <= count + 1;
Port map instance_name component name port | M1 : mux2la port map(
map - - a =>c(0), b =>c(1),

(port_association_list);

s => s(0), vy => Vv);

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

