Power MOSFET

30 V, 7.4 m Ω , 47 A, Single N–Channel, µ8FL

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVTFS4C10NWF Wettable Flanks Product
- NVT Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

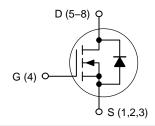
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain Current R _{0.IA}		T _A = 25°C	I _D	15.3	Α
(Notes 1, 2, 4)		T _A = 100°C		10.8	
Power Dissipation R _{θJA}		T _A = 25°C	P _D	3.0	W
(Notes 1, 2, 4)	Steady	T _A = 100°C		1.5	
Continuous Drain Current R _{ψJC}	State	T _C = 25°C	I _D	47	Α
(Notes 1, 3, 4)		T _C = 100°C		33	
Power Dissipation		T _C = 25°C	P_{D}	28	W
R _{ψJC} (Notes 1, 3, 4)		T _C = 100°C		14	W
Pulsed Drain Current	$T_A = 25^{\circ}$	C, t _p = 10 μs	I_{DM}	196	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			IS	53	Α
Single Pulse Drain-to-Source Avalanche Energy $(T_J = 25^{\circ}C, V_{GS} = 10 \text{ V}, I_L = 10.2 \text{ A}, L = 0.5 \text{ mH})$			E _{AS}	26	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

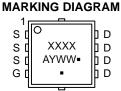
Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Notes 1, 3)	$R_{\psi JC}$	5.4	
Junction-to-Ambient - Steady State (Notes 1, 2)	$R_{\theta JA}$	50	°C/W

- The entire application environment impacts the thermal resistance values shown; they are not constants and are valid for the specific conditions noted.
- 2. Surface-mounted on FR4 board using 650 mm², 2 oz. Cu Pad.
- Assumes heat-sink sufficiently large to maintain constant case temperature independent of device power.
- 4. Continuous DC current rating. Maximum current for pulses as long as one second is higher but dependent on pulse duration and duty cycle.



ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	7.4 mΩ @ 10 V	47 A
	11 mΩ @ 4.5 V	47.7

N-Channel MOSFET

WDFN8 (μ8FL) CASE 511AB

4C10 = Specific Device Code for

NVMTS4C10N

WF10 = Specific Device Code of

NVTFS4C10NWF

A = Assembly Location

Y = Year

WW = Work Week

= Pb-Free Package

ORDERING INFORMATION

(Note: Microdot may be in either location)

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				14.5		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0		
		V _{DS} = 24 V	T _J = 125°C			10	μΑ	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS}$; = ±20 V			±100	nA	
ON CHARACTERISTICS (Note 5)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= 250 μΑ	1.3		2.2	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-4.5		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		5.9	7.4		
		V _{GS} = 4.5 V	I _D = 15 A		8.8	11	mΩ	
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _I	_D = 15 A		43		S	
Gate Resistance	R _G	$T_A = 25^{\circ}$	C		1.0		Ω	
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}				993			
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	z, V _{DS} = 15 V		574		pF	
Reverse Transfer Capacitance	C _{RSS}				163			
Capacitance Ratio	C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			0.164			
Total Gate Charge	$Q_{G(TOT)}$				10.1		nC	
Threshold Gate Charge	Q _{G(TH)}				1.8			
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 7$	15 V; I _D = 30 A		2.6			
Gate-to-Drain Charge	Q_{GD}				6.1			
Gate Plateau Voltage	V_{GP}				3.2		V	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 1$	5 V; I _D = 30 A		19.3		nC	
SWITCHING CHARACTERISTICS (Note 6	6)							
Turn-On Delay Time	t _{d(ON)}				9.0			
Rise Time	t _r	V _{GS} = 4.5 V. V _D	s = 15 V.		30		ns	
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 4.5 \text{ V}, V_{D}$ $I_{D} = 15 \text{ A}, R_{G}$	= 3.0 Ω		14			
Fall Time	t _f				7.0			
Turn-On Delay Time	t _{d(ON)}				6.0		Ī	
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			25		ns	
Turn-Off Delay Time	t _{d(OFF)}				18			
Fall Time	t _f				4.0			
DRAIN-SOURCE DIODE CHARACTERIS	TICS							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.80	1.1	V	
		$I_{S} = 10 \text{ A}$	T _J = 125°C		0.67			
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dIS/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 30 \text{ A}$			23.3			
Charge Time	t _a				12.7		ns	
Discharge Time	t _b				10.6			
Reverse Recovery Charge	Q _{RR}				8.3	<u> </u>	nC	

^{5.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

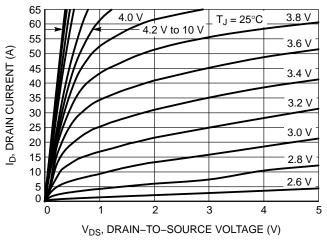


Figure 1. On-Region Characteristics

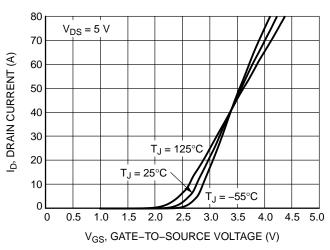


Figure 2. Transfer Characteristics

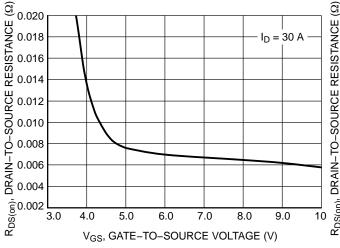


Figure 3. On-Resistance vs. V_{GS}

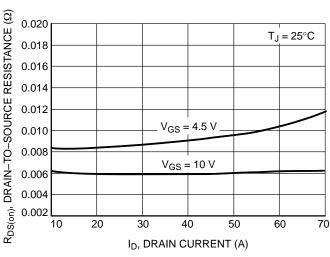


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

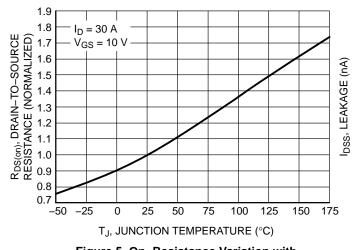


Figure 5. On–Resistance Variation with Temperature

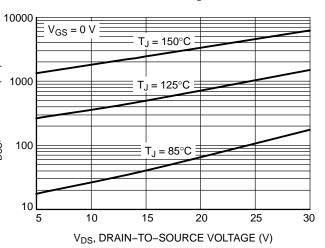


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

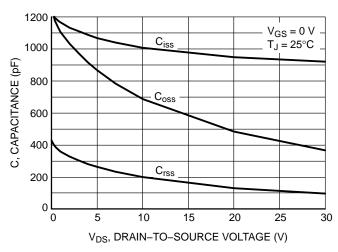


Figure 7. Capacitance Variation

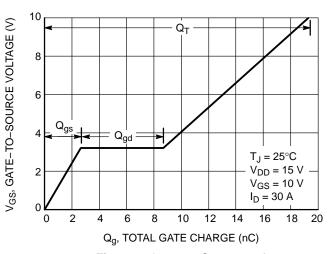


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

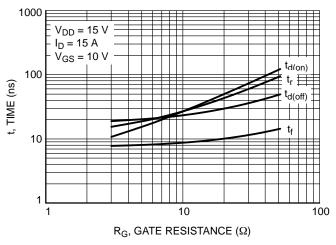


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

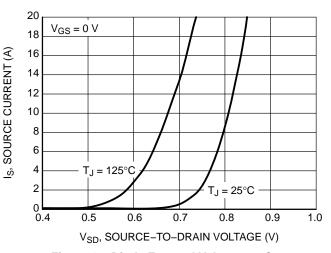


Figure 10. Diode Forward Voltage vs. Current

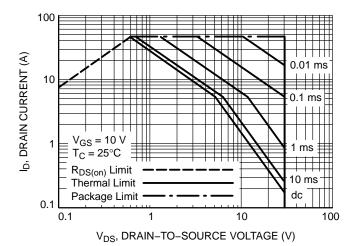


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

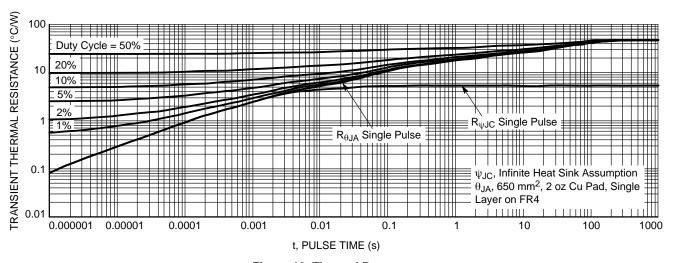


Figure 12. Thermal Response

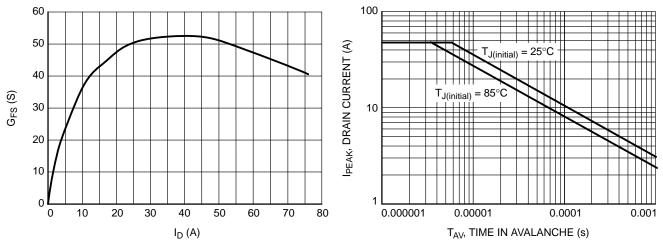
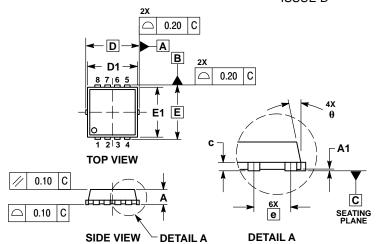


Figure 13. G_{FS} vs. I_D

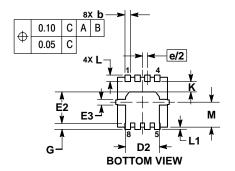
Figure 14. Avalanche Characteristics

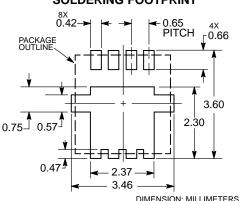

ORDERING INFORMATION

Device	Package	Shipping [†]		
NVTFS4C10NTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel		
NVTFS4C10NWFTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	3.30 BSC			0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E		3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е	0.65 BSC			0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
K	0.65	0.80	0.95	0.026	0.032	0.037	
Ĺ	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
M	1.40	1.50	1.60	0.055	0.059	0.063	
A	0 °		12 º	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative