LB1933M

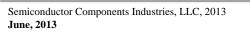
Monolithic Digital IC Low-saturation Forward/Reverse Motor Drive

Overview

The 1933M is a forward/reverse motor driver that supports low voltage drive and features low-saturation outputs in a miniature package.

Features

• Low saturation output: V_Osat=0.3V typ (I_O=300mA)


Specifications

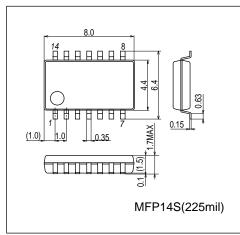
Absolute Maximum Ratings at Ta = 25°C

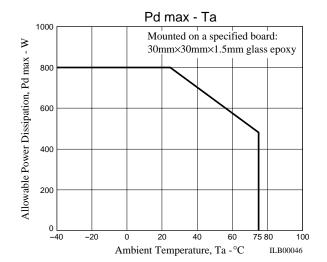
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		-0.3 to +10.5	V
	V _S max		-0.3 to +10.5	V
Maximum Output applied voltage	VOUT		V _S +V _{SF}	V
Maximum input applied voltage	V _{IN}		-0.3 to +10.0	V
Maximum output current	I _{GND}	Per channel	1.0	А
Allowable power dissipation	Pd max1	Independent IC	550	mW
	Pd max2	* Mounted on a specified board	800	mW
Operating temperature	Topr		-30 to +75	°C
Storage temperature	Tstg		-40 to +150	°C

Note *: Mounted on a specified board: 30mm×30mm×1.5mm, glass epoxy

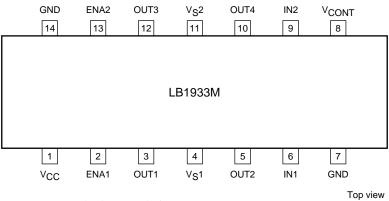
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ranges at $Ta=25^{\circ}\mathrm{C}$


Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage range	V _{CC}		2.2 to 7.5	V
	٧ _S		1.8 to 7.5	V
Input high-level voltage	VIH		1.8 to 7.5	V
Input low-level voltage	VIL		-0.3 to +0.7	V

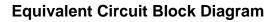

Electrical Characteristics at Ta = 25° C, V_S1=V_S2=V_{CC}=3V

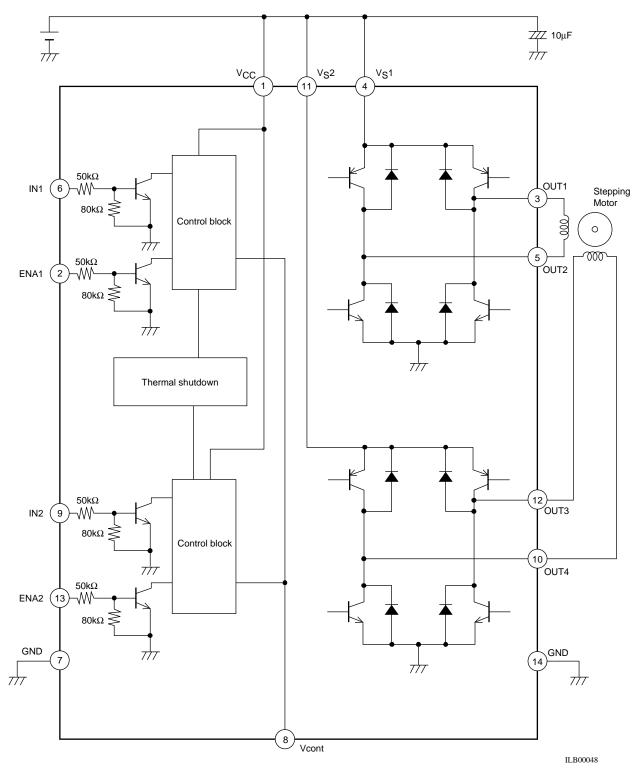
Parameter	Cumhal	Quarditions	Ratings			1.114
Parameter	Symbol Conditions		min	typ	max	Unit
Power current	Icco	TOTAL, ENA=0V, V _{IN} =0V		0.1	10	μA
	ICC	V _{CC} , ENA=3V, V _{IN} =3V		5	7	mA
	۱ _S	V _S 1+V _S 2, ENA=3V, V _{IN} =3V		16	25	mA
Output saturation voltage	V _O sat1	ENA=3V, V _{IN} =3V or 0V, I _{OUT} =300mA		0.30	0.45	V
	V _O sat2	ENA=2.2V, V _{IN} =2.2V or 0V, V _{CC} =2.2V, V _S =2.0V, I _{OUT} =150mA			0.20	V
Input current	I _{IN}	V _{IN} =3V			80	μA
	IENA	V _{ENA} =3V			80	μA
Spark killer diode						
Reverse current	I _S (leak)	V _{CC} =V _S =7V			30	μΑ
Forward voltage	V _{SF}	I _{OUT} =400mA			1.7	V


Package Dimensions

unit : mm (typ) 3111A

Pin Assignment




Note: Connect both ground pins.

ILB00047

Truth Table

IN 1/2	ENA 1/2	OUT 1/3	OUT 2/4	Mode
L	н	Н	L	Forward
н	н	L	н	Reverse
L	L	OFF	OFF	Standby
Н	L	OFF	OFF	Standby

* There are no constraints on the relationship between the applied voltage to V_{CC} , V_{S1} , V_{S2} , ENA1, ENA2, IN1, and IN2 within the absolute maximum ratings (For example, this IC can be used at $V_{CC}=3V$, $V_{S1}=V_{S2}=2V$, and ENA=IN=5V)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affimative Action Employeer. This literature is subject to all applicable copyright laws and is not for resale in any manner.